Weather Theory

Objective

To understand basic meteorology concepts and how they relate to aviation, especially those that affect the safety of flight.

Motivation

- We need to understand how weather affects airplane performance
- We want to effectively interpret weather data

What are the most important weather decisions we will make?

- Go/no go decisions
- Route planning
- Decisions to divert

Overview

- The atmosphere
- Temperature
- Pressure
- Wind
- Turbulence
- Stability
- Moisture, fog, and clouds
- Air masses and fronts
- Thunderstorms

Atmosphere

Air is around 78% nitrogen, 21% oxygen.

Remains a constant proportion as you ascend.

The Standard Atmosphere

- The real atmosphere is always changing
- We use the International Standard Atmosphere as a fixed reference
 - 29.92 inches Hg at sea level
 - ∘ 15° C (59° F) at sea level
 - Temperature drops 2° per 1000 feet
 - Pressure drops 1" per 1000 feet

Temperature

- Temperature describes the heat energy contained in a substance
- Substances absorb and retain heat differently
 - Land will become hot quickly and radiate lots of heat
 - Water will absorb and emit little heat energy

Temperature Variation

- Diurnal variation: Changes in temperature from day to night
- Seasonal variation: Summer vs winter temperatures
- Latitude variation: Equatorial regions are hotter than polar regions

Temperature Variation (cont.)

- Topography variation
 - Dry, barren surfaces emit heat more than wet or vegetated regions
- Altitude variation: Temperature decreases with altitude
 - Rate is given by the **lapse rate**
 - Average lapse rate is 2° per 1000 feet

Pressure

- Atmospheric pressure is the force per unit area exerted by the weight of the atmosphere
- Pressure units:
 - Pounds per square inch (PSI)
 - Millibars
 - Inches of mercury (e.g. 29.92" Hg)
- Ambient pressure at sea level:
 - ∘ ~14.7 (PSI)
 - 1013.2 millibars
 - ∘ 29.92" Hg

How does pressure change with altitude?

- Pressure decreases as you ascend in the atmosphere
- Barometric pressure is about 50% dense at 18,000 ft
- Standard atmosphere
 - ∘ 29.92" Hg at sea level
 - Pressure drops 1" Hg per 1000 feet

Less Pressure = Less Performance

How does pressure change with temperature?

- How does air change with temperature?
- Higher temperature = higher pressure
- Air expands as it gets warmer

Mapping Pressure

- What if we plot ambient pressure on a map?
- Black lines are called isobars:
 Lines of equal pressure
 - Like contours on a topographical map
 - Tightly spaced = big change in pressure over a small distance

Wind and Advection

- Differences in temperature create differences in pressure
- Areas of high pressure want to equalize (move towards) areas of lower pressure
- This results in a pressure gradient force, which results in wind

Coriolis Force

- The Earth is spinning, so objects that move in a straight line in space appear to be deflected to the right on the surface
- This "force" is zero at the equator and increases towards the poles

- The Coriolis force acts
 proportionally to wind speed and opposite the pressure gradient force
- This results in wind flowing *parallel* to the isobars

Wind and Isobars

In the northern hemisphere:

- Low pressure, inward and clockwise: anticyclonic
- High pressure, outward and counterclockwise: cyclonic

Surface Friction

- When wind is close to the ground additional friction influences the wind direction
- Wind will flow at an angle across the isobars

Sea breeze and land breeze

- Sea breeze:
 - Land heats quickly, hot air rises
 - Low pressure which draws cool air from the sea onshore (on-shore wind)
- Land breeze:
 - Land cools faster, so warm
 air over water rises
 - Draws air towards the sea (off-shore wind)

Turbulence

Convective Heating

- Paved areas, plowed fields, dirt absorb and give off more heat quickly
- Trees, water, vegetation give off heat more slowly
- This uneven heating makes more warm pockets of air that cause turbulence

Uneven Surface Heating

Turbulent flows from obstructions

- Near the ground: hangars, buildings
- Mountains, ridges, bluffs

Wind shear

• Turbulent area with mixing between two air different air masses

Low-level wind shear

- Microbursts, often the vicinity of thunderstorms
- Especially dangerous near the ground

Mountain Wave

- Large updrafts on the upwind side of the ridge
- Large downdrafts on the leeward side
- Turbulence can be violent in the rotor
- Can extend for 100 miles downwind

Lenticular clouds often indicate mountain wave

Atmospheric Stability

The tendency of atmosphere to resist or encourage vertical motion

Adiabatic Cooling

- Adiabatic cooling: Air loses temperature as it rises, since the ambient pressure decreases
- A parcel of air lifted from the surface will cool at the dry adiabatic lapse rate
 - 3 °C (5.4 °F) per 1,000 feet
 - This is independent of the lapse rate
 of the air mass surrounding it

If the parcel cools faster than the surrounding air, it will want to descend: stability

Example:

- Parcel lapse rate: 3° per 1000'
- Atmospheric lapse rate: 2.5° per 1000'

If the parcel cools slower than the surrounding air, it will want to ascend: instability

Example:

- Parcel lapse rate: 3° per 1000'
- Atmospheric lapse rate: 3.5° per 1000'

Temperature

Moisture and Stability

- Moisture decreases air density
- Moist air cools at a slower rate than dry air
- Conditionally unstable means air is unstable until it saturates, then it becomes stable

Stability Summary

- Cool, dry air is stable and resists vertical movement
- Warm, moist air produces the most instability
 - A fast lapse rate indicates an unstable atmosphere

Info	Weather	Runway	Procedure	NOTAM	
METAR	TAF	MOS	Daily	Winds	
				h 58m ago	
17:30 PDT	•				
3,000'	23°C (ISA+14)		223° at 4	223° at 43 kts	
6,000'	15°C (ISA+12)		235° at 4	235° at 44 kts	
Rapid temperature drop: possible unstable air					
9,000'	6°C (ISA+9)		245° at 3	8 kts	
12,000'	-1°C (ISA+8)		241° at 3	9 kts	
15,000'	-8°C (ISA+7)		234° at 4	6 kts	
18,000'	-15°C (-15°C (ISA+6)		4 kts	
21,000'	-21°C (-21°C (ISA+6)		0 kts	
24,000'	-28°C (-28°C (ISA+5)		8 kts	
27,000'	-34°C (-34°C (ISA+4)		8 kts	
30,000'	-41°C (-41°C (ISA+3)		234° at 98 kts	
33,000'	-47°C (-47°C (ISA+3)		233° at 101 kts	
36,000'	-52°C (-52°C (ISA+4)		0 kts	

Temperature Inversions

- Layers where temperature *increases* with altitude
- Often occurs on clear, cool nights, when the ground cools the air above it
- Can trap pollutants below the layer
- Smooth air can often be found above the inversion

Moisture and Clouds

Moisture and Temperature

Every 20°F increase in temperature doubles the capacity of water the air can hold

Dewpoint and Relative Humidity

- Relative humidity is the percentage of water in the air vs. how much water the air could hold at that temperature
- **Dewpoint** is the point at which the air would be completely saturated by the current amount of water

Saturated Air

Saturated air bring clouds, fog, and precipitation

- Clouds often form when unstable air rises and cools to the dewpoint
- Dew and frost: form when surfaces cool beyond the dewpoint and water condenses on the side

Fog - Ground Clouds

Fog forms when the ground cools the air above it to its dewpoint, then the water vapor condenses and forms a cloud.

Radiation fog

- Clear, windless nights with sufficent humidity
- Ground cools the air above it
- Dissipates quickly with a rise in temperature or light winds

Advection fog

- Warm, moist air moves over a colder surface
- Requires wind, up to 15 knots
- Coastal regions are particularly effected (U.S. west coast)

Upslope fog

- Moist air is forced up a slope
- Air then adiabatically cools to dewpoint and fog forms

Steam fog

Cold, dry air moves over water, causing evaporation from the water

Front / Precipitation Fog

- Often associated with a warm front
- Rain falls into air mass below it, raising it's humidity

Virga

- Precipitation that evaporates or sublimates before reaching the ground
- Can be associated with thunderstorms (sometimes called a "dry thunderstorm")
- Is visible on radar return (NEXRAD), even though no rain is falling at the surface

Clouds

Cloud Formation

- Three ingredients for clouds to form: Moisture, cooling, condensation nuclei
 - Moisture condenses onto minuscule particles of matter

Air Masses

- Form from large source regions
- Deserts, oceans,
 large lakes, polar
 caps
- Source conditions may develop for days

Fronts

- Fronts form as interactions between these air masses
- As front pass:
 - Pressure will change
 - The temperature will change
 - The wind direction will change

source. Also, fronts shown in color code do not necessarily show

frontal symbols.

Warm Fronts - Shallow frontal slope

- Warm, often moist air that slides slowly over a colder air mass (shallow frontal slope)
- Ahead of the front, cribriform or stratiform clouds and light precipitation
- Poor visibility, haze as the front passes

Cold Fronts - Steep frontal slope

- Cold, dense, stable air quickly slides under and replaces a warmer air mass
- May produce a concentrated band of precipitation and thunderstorms
- Squall lines may form ahead of a fast-moving cold front

Stationary Front - Equal air masses

- Air masses with relatively equal forces can remain stationary for several days
- Weather is a mixture of cold front/warm front conditions
- Precipitation is common

Occluded front - Cold front overtaking

- Cold fronts typically move faster than warm fronts,
 so they catch up to warm fronts
- Two types:
 - Cold-front occlusion: A air is colder than B air
 - Warm-front occlusion: B air is colder than A air

Cold-front Occlusion

- Cold front pushes warmer air aloft, stability
- Mixture of cold/warm front weather

Warm-front Occlusion

- Cold front "rides up" over the warm front, cooling aloft, instability
- Can cause severe thunderstorms, rain, fog

Thunderstorms

- Three ingredients:
 - Instability
 - Lifting action
 - Moisture
- Heavy rain, hail, strong winds

Stages of a Thunderstorm

- Cumulus stage
 - Air rises, strong updrafts occur
- Mature stage
 - Moisture is too heavy for cloud to support, precipitation starts falling, this causes a downdraft
 - Vertical motion is stalled, and top of the cloud forms the anvil shape
- Dissipating stage
 - Downdrafts spread and replace updrafts

Thunderstorm Hazards

- Heavy rain
- Engine water ingestion
- Hail which may be thrown miles from the storm
- Violent turbulence in the storm and in the vicinity
- Wind shear turbulence and microbursts near the surface
- Supercooled water droplets that can freeze on impact with an airplane
- Lightning: Temporarily blindness, radio interference, magnetic compass errors

Microbursts

- Result of strong downdrafts that form out of a storm (> 6000 fpm)
- Can cause severe windshear when they impact the ground
- Approximately 1-3 miles in diameter, last for 5-15 minutes

Squall Lines

- Large line of steady-state thunderstorms
- Often associated with the passage of a fast-moving cold front

Thunderstorm Avoidance

- It is impossible to fly over most thunderstorms, especially in a light aircraft
- Circumnavigate a severe or large-echo thunderstorm by at least 20nm
- Visual appearance to be a reliable indicator of turbulence
- Never use NEXRAD for navigating through thunderstorms
- More information in 00-24C

Icing

Structural Icing

Buildup of ice on the airplane structure can be extremely hazardous

Conditions for Icing

- 1. Aircraft is flying through visible moisture (clouds, vapor)
- 2. Temperature at the point where the moisture strikes must be 0° C or colder

Types of Icing

- Clear icing: Often forms when large drops of moisture freeze after contacting the fuselage
 - Common at lower altitude
- Rime icing: Small droplets freeze rapidly, leading to a rough surface
 - Common at higher altitudes

Summary

- The Atmosphere: ISA, most weather is in the troposphere
- Temperature: Uneven heating
- Pressure: Temperature creates pressure differences
- Wind: High pressure to low pressure
- Turbulence: Unstable air, ground interference, mountain wave
- Stability: Fast lapse rate indicates instability
- Moisture, Fog, and Clouds: Clouds forms when air reaches its dewpoint
- Air masses: Air masses interact in frontal areas
- Thunderstorms: Hazardous weather for all aircraft

Knowledge Check

What are the three ingredient needed for a thunderstorm to form?

Knowledge Check

You're planning a flight and trying to determine a cruising altitude. According to the forecasts, the cloud bases are around 4,500' MSL. Which cruising altitude would most likely have a smoother ride, 3000' or 6000'?

Knowledge Check

Coming into land at a new airport, the weather report states that the wind is blowing 12 knots, gusting to 19 knots. How would you change your approach and landing?