Performance and Limitations

Objective

Gain an intuitive understanding of how atmospheric conditions affect aircraft performance, and how to use our airplane's performance charts to compute specific performance numbers.

Motivation

Altitude, temperature, and pressure affect all aspects of our airplane's performance. All pilots need to understand how these factors affect the capabilities of the airplane and how that affects the safety of flight.

Overview

- Air and density
 - International Standard Atmosphere
 - Types of Altitude
 - $\circ\,$ Types of Airspeed
 - $\circ\,$ How density affects performance
- Airplane performance charts
 - $\circ\,$ Performance scenario using Cessna charts
 - $\circ~$ Other chart styles

Performance Concepts

Air and Density

- Air has mass
- Our airplane swims through the air, air molecules bounce off the airplane
 - As these air molecules are deflected downward, our airplane is forced upward
 - Our propeller pushes air backwards which pushes us forwards
 - Our engine "breaths" air from outside, burns that air with fuel to produce power

Source: National Oceanic and Atmospheric Administration | By The New York Times

High and Low Air Density

- All of this depends on how close the air molecules are together
- Tightly spaced = more air to grab on to
 - $\,\circ\,$ Wings can produce more lift
 - $\circ~$ Propeller can produce more thrust
 - Engines has more air molecules to burn, just like a campfire
- Sparely spaced = less air to grab on to
 - Wings produce less lift
 - Propellers can't produce as much thrust
 - $\circ\,$ Engine has less air molecules to burn

Things That Affect Density: Altitude (Variable #1)

- Density decreases as we get farther from the Earth's surface due to gravity
- The rate at which this occurs is called the pressure *lapse rate*
- The average lapse rate is 1" Hg per 1000 ft.

Thing That Affect Density: Ambient Pressure (Variable #2)

- The pressure outside varies from day to day
- On high pressure days, the air is more dense
- On low pressure days, the air is less dense

Things That Affect Density: Temperature (Variable #3)

- Hot air molecules bounce off each other more energetically
- This causes the molecules to spread out and become less dense
- Likewise, cold air molecules are less excited become more dense

Rolling it All Up

- That's a lot of variables to consider
- What if there was a magic "density" number which could combine:
 - Altitude
 - Ambient pressure
 - Temperature
- Then give us one number which represents the density of the air

International Standard Atmosphere (ISA)

- A fake atmosphere with ideal conditions
 - Our "magic" density number is a height in this atmosphere
 - This height would have an *equivalent* density to the real conditions
- ISA Definitions
 - At sea level, the pressure is 29.92" Hg (1013.2 millibars)
 - $\circ\,$ Pressure lapses (reduces) at 1" Hg per 1000'
- The higher the altitude, the lower our airplane's performance

How do we compute this magic density number?

First, gather your information:

- Field elevation 4170 ft.
- Temperature **84° F**, **29° C**
- Pressure 29.88" Hg

Start with variable #1: Altitude

- Start with the field elevation
- If we were in the airplane we'd read this directly off the altimeter, what we call *indicated altitude*

Correct for Variable #2: Ambient Pressure

1. We get this from the current altimeter setting

 $\circ~$ Subtract the S.L. pressure of 29.92" Hg ~

 \circ (29.92 - 29.88) = 0.04" Hg

- 2. Since we know the standard atmosphere lapses at 1" per 1000':
 - $\circ\,$ Multiple this by 1000 to get the change in feet

 $\circ 0.04 * 1000 = 40$

3. Add this difference to our field elevation:

 $\circ 4170 + 40 = 4210$

• The altitude in the standard atmosphere where the current *pressure* is found

4. This is called **pressure altitude**

Appendix 2

DENSITY ALTITUDE CHART Altimeter setting Pressure altitude ("Hg) conversion factor 15 14,000 28.0 1,824 14 28.1 1,727 13,000 28.2 1,630 13 28.3 1,533 12,000 28.4 1,436 12 Pressure attitude (feet) 28.5 1,340 11,000 1.244 28.6 11 28.7 1,148 10.000 Approximate density altitude (thousand feet) 1,053 28.8 10 9,000 28.9 957 29.0 863 9 29.1 768 8,000 29.2 673 8 Standard 29.3 579 7,000 485 29.4 7 29.5 392 6,000 Liemperature 29.6 298 6 29.7 205 5,000 29.8 112 5 4,000 29.9 20 29.92 0 4 30.0 -73 3,000 30.1 -165 3 -257 2,000 30.2 30.3 -348 2 1,000 30.4 -440 Sealevel 30.5 -531 1 30.6 -622 -1,000 30.7 -712 S.L 30.8 -803 °C -18° -12° -7° 21° -1° 4° 10° 16° 27° 32° 38° 43° 30° °FO° 10° 20° 40° 50° 60° 70° 80° 90° 100° 110° 30.9 -893 -983 31.0 Outside air temperature

Pressure Altitude Chart

Figure 8. Density Altitude Chart.

Pressure altitude another way: Have the altimeter do the math

- As you rotate the Kollsman window the altimeter moves up and down at that same rate 1" per 1000'
- If we set our altimeter to 29.92" (the pressure of S.L. in the standard atmosphere), it will give us pressure altitude

Correct for Variable #3: Temperature

- The temperature in the standard atmosphere decreases as we ascend:
 - Temperature is 15°C at sea level
 - $\circ\,$ The temperature lapse rate is 2° per 1000'
 - We care about the different between *actual* temperature and *standard* temperature
- At a pressure altitude of 4210'

 $\circ \ 15\degree C - 2*(4210/1000) = 6.58\degree C$

• If the pressure outside is 29°C

 $\circ 29-6.58=22.4$ °C above standard

Correct for Variable #3: Temperature

- Now need factor this temperature difference into our density altitude
- Apply the formula:
 - \circ Pressure altitude + 118.8 * (Temperature difference from standard)

 $\circ 4210 ext{ ft} + 118.8 * 22.4 \degree C = 6871 ext{ ft}$

- This is our magic number: density altitude
 - If our airplane were flying in the standard atmosphere, it would feel like it's flying at 6871 feet

Review of Altitude Types

- Ambient pressure/Altimeter setting: Set in the Kollsman window
- Indicated altitude: Read directly off the altimeter
- Pressure altitude: Height in the ISA where current pressure is found
- Density altitude: Height in the ISA where the current pressure is found, plus any correction for temperature

Pitot Tube As A Molecule Counter

- More forward movement: More molecules we hit
- More air density: Molecules tightly spaced so more to hit

Imagine an Airplane Traveling 100 Feet

- Plane travels 100 feet at the same speed:
 - If the air density is high, it's going to hit 200 molecules higher airspeed shown
 - $\circ\,$ If the air density is low, it's going to hit 100 molecules lower airspeed shown
- Which is going to produce more lift force?

Types of Airspeed: Indicated Airspeed

- How many molecules are hitting the pitot tube
- Really a measure of pressure:
 - \circ Airspeed = RAM air pressure Static air pressure

Types of Airspeed: Calibrated Airspeed

- The pitot tube is attached at a certain angle
- This might not be directly into the relative wind
- With a high angle of attack, the relative wind will be at a steeper angle
- To account for this, we compute calibrated airspeed
 - This is usually given in a table in the POH

Computing Calibrated Airspeed

AIRSPEED CALIBRATION

NORMAL STATIC SOURCE

CONDITIONS:

Power required for level flight or maximum power descent.

FLAPS UP]
KIAS KCAS	50 61	60 65	70 72	80 80	90 89	100 99	110 109	120 118	130 128	140 138	150 147	160 157	170 167	
FLAPS 200														1
KIAS KCAS	40 54	50 58	60 63	70 71	80 80	90 89	95 94							
FLAPSFULL]
KIAS KCAS	40 52	50 57	60 63	70 71	80 80	90 90	95 95							

- Examples
 - Indicated airspeed of 120
 means a calibrated airspeed of 118
 - Indicated airspeed of 60 means a calibrated airspeed of 65
- Notice how the error increases the slower we are

Types of Airspeed: True Airspeed

- Similar to altitude, we can account for non-standard temperature and pressure in airspeed
- This adjusts the "molecule count" based on the air density
 - Uses the same 3 variables: Altitude, pressure, temperature
- True airspeed in the speed you're moving through the *air mass*

True Airspeed: Example

- Pressure altitude (PALT): 4210'
- Outside air temperature (OAT): 29°C
- Calibrated airspeed (CAS): 118 knots

Using an E6B computer, we compute true airspeed (TAS) as **130.1 knots**

- This means we're flying *faster* through the air mass than the airspeed indicator would have us believe.
- With no wind, we'd be moving 130 knots over the ground

Types of Airspeed: Ground Speed

- The air mass itself might be moving due to wind
- We add wind velocity to our true airspeed to get our speed over the ground
- With zero wind: Ground speed = true airspeed

Types Of Airspeeds

- Indicated airspeed (IAS): Read from altimeter
- Calibrated airspeed (CAS): Calibrated for position/instrument errors
 - $\circ\,$ At slow airspeeds this may be several knots off
- True airspeed (TAS): CAS corrected for altitude and nonstandard temperature
- Ground speed (GS): Actual speed over the ground
 - $\circ\,$ TAS adjusted for wind

Knowledge Check

- Assuming all other variables are the same:
 - $\circ\,$ Where will an airplane have a longer takeoff roll, in Denver or in Orlando?
 - $\circ\,$ Where will an airplane have a longer landing roll, when the temperature is 2° C or 30° C?
 - Which aircraft will have a higher ground speed on takeoff, when the pressure is 20.79" or 30.44" Hg?
 - When will our (normally-aspirated) airplane produce the most power, on the ground or at 8000 feet?

Performance Planning

Performance

On a cross-country flight we want to know:

- How long the flight will take
- How much fuel we will burn
- How mush landing distance we will use
- How much runway distance we will use

CRUISE PERFORMANCE

PRESSURE ALTITUDE 2000 FEET

CONDITIONS: 3100 Pounds Recommended Lean Mixture Cowl Flaps Closed

NOTE

For best fuel economy, operate at the leanest mixture that results in smooth engine operation or at peak EGT.

		20 STAN	°C BELO NDARD 1 -9°C	W TEMP	S ⁻ TEN	FANDAR IPERATU 11ºC	ID JRE	20 ⁰ C ABOVE STANDARD TEMP 31 ⁰ C			
RPM	MP	% 8HP	KTAS	GPH	% BHP	KTAS	GPH	% BHP	KTAS	GPH	
2400	25 23 21 19	74 65 57	131 125 117	14.0 12.4 10.9	78 70 62 54	137 131 124 116	14.8 13.3 11.8 10.5	74 66 59 51	137 130 123 115	14.0 12.6 11.3 10.0	
2300	25	78	135	14.9	74	135	14.1	71	134	13.4	
	23	70	129	13.3	67	128	12.7	63	128	12.1	
	21	62	122	11.8	59	121	11.3	56	120	10.8	
	19	54	114	10.4	51	113	10.0	49	112	9.6	
2200	25	75	132	14.2	71	132	13.5	67	131	12.8	
	23	67	126	12.7	64	126	12.1	60	125	11.5	
	21	59	119	11.3	56	118	10.8	53	117	10.3	
	19	51	111	9.9	49	110	9.5	46	108	9.1	
2100	25	71	129	13.5	68	129	12.9	64	129	12.2	
	23	64	123	12.1	60	123	11.5	57	122	11.0	
	21	56	116	10.7	53	115	10.3	50	114	9.8	
	19	48	108	9.5	46	106	9.1	43	104	8.7	
	17	41	97	8.2	39	95	7.8	37	91	7.5	

Aircraft Performance Charts

- Published in our POH/AFM
- Based on a new airplane, engine, and propeller
- Based on a test pilot flying with excellent technique (airspeed control, proper leaning)
- Formatted in a variety of ways
 - Some use pressure altitude

+ temperature (Cessnas)

 Some use density altitude only

Performance Scenario

- Depart: Lewiston Municipal (KLWT)
 - Elevation: 4170'
 - Altimeter: 29.88" Hg
 - Temperature: 29°C
- Cruise at 8500 ft.
- Arrive: Harve City County (KHVR)
 - Elevation: 2591'
 - Altimeter: 29.95" Hg
 - Temperature: 25° C

- Aircraft
 - 50 gallons of fuel aboard
 - Max gross weight (3100 lbs)

Takeoff Distance

TAKEOFF DISTANCE

MAXIMUM WEIGHT 3100 LBS

SHORT FIELD

CONDITIONS: Flaps 20⁰ 2400 RPM and 31 Inches Hg Prior to Brake Release Mixture Full Rich Cowl Flaps Open Paved, Level, Dry Runway Zero Wind

NOTES:

- 1. Short field technique as specified in Section 4.
- Decrease distances 10% for each 9 knots headwind. For operation with tailwinds up to 10 knots, increase distances by 10% for each 2 knots.
- 3. For operation on a dry, grass runway, increase distances by 15% of the "ground roll" figure.

_					~ ~	いた	C	700	10	JUL .		P	÷	F
		TAKEOFF SPEED		PRESS	5°	5 0°C		10 ⁰ C	ଜୁନ	C 20°C		30°C	104	40 ⁰ C
ľ	LBS	KI	AS	ALT		TOTAL		TOTAL		TOTAL	7	TOTAL		TOTAL
L		LIFT OFF	AT 50 FT	FT	GRND ROLL	TO CLÉAR 50 FT OBS	GRND ROLL	TO CLEAR 50 FT OBS	GRND ROLL	TO CLEAR 50 FT OBS	GRND ROLL	TO CLEAR 50 FT OBS	GRND ROLL	TO CLEA 50 FT OB
	3100	49	58	S.L. 1000 2000 3000 4000 5000 6000 7000 8000	700 750 800 855 920 985 1055 1135 1220	1310 1390 1475 1570 1670 1780 1900 2035 2180	760 810 930 995 1070 1145 1235 1325	1415 1505 1600 1700 1815 1935 2070 2220 2385	820 880 940 1005 1080 1155 1245 1335 1440	1535 1630 1735 1850 1970 2110 2260 2425 2605	890 950 1015 1090 1165 1250 1345 1450 1560	1665 1770 1885 2010 2145 2300 2465 2650 2855	960 1025 1100 1175 1260 1355 1455 1565 1685	1805 1925 2050 2190 2345 2510 2700 2910 3140

Headwind: 4 knots Pressure altitude: 4210 Temperature: 29°C

30° line, 4000': 1165' ground roll 2145 over 50' obstacle

4 kts headwind, -5%: 1165 * 0.95 = 1107 ft. 2145 * 0.95 = 2137 ft.

Takeoff Distance - Safety Factor

Ground roll = **1107 ft.** Over 50' obstacle = **2137 ft.**

With 50% safety factor:

1107 * 1.5 = 1660 ft. 2137 * 1.5 = 3205 ft.

Time, Distance, Fuel to Climb (Normal Climb)

TIME, FUEL, AND DISTANCE TO CLIMB

NORMAL CLIMB - 95 KIAS

CONDITIONS: Flaps Up 2400 RPM 24 Inches Hg Mixture Full Rich Cowl Flaps Open Standard Temperature

NOTES:

1. Add 2.0 gallons of fuel for engine start, taxi and takeoff allowance.

2. Increase time, fuel and distance by 10% for each 7°C above standard temperature.

3. Distances shown are based on zero wind.

WEIGHT	PRESSURE	темр	RATE OF		FROM SEA LEVEL					
LBS	ALTITUDE FT	°C	FPM	TIME MIN	FUEL USED GALLONS	DISTANCE NM				
3100	S.L.	15	500	0	0	0				
	2000	11	500	4	1.4	6				
	4000	7	495	8	2.8	13				
	6000	3	485	12	4.3	20				
	8000	- 1	470	16	5.7	27				
	10,000	- 5	450	21	7.3	35				
	12,000	-9	425	25	8.9	44				

Airport: 4170' Cruise: 8500' Above standard: 22 ° C

8000' line: 16 minutes, 5.7 gal, 27m 4000' line: 8 minutes, 2.8 gal, 13nm 16 - 8 = 8 minutes

5.7 - 2.8 = 2.9 gallons

27 - 13 = 14nm

Time, Distance, Fuel to Climb (Normal Climb)

TIME, FUEL, AND DISTANCE TO CLIMB

NORMAL CLIMB - 95 KIAS

CONDITIONS: Flaps Up 2400 RPM 24 Inches Hg Mixture Full Rich Cowl Flaps Open Standard Temperature

NOTES:

1. Add 2.0 gallons of fuel for engine start, taxi and takeoff allowance.

2. Increase time, fuel and distance by 10% for each 7°C above standard temperature.

3. Distances shown are based on zero wind.

WEIGHT	PRESSURE	ТЕМР	RATE OF	FROM SEA LEVEL					
LBS	FT	°C	FPM	TIME MIN	FUEL USED GALLONS	DISTANCE NM			
3100	S. L.	15	500	0	0	0			
	2000	11	500	4	1.4	6			
	4000	7	495	8	2.8	13			
	6000	3	485	12	4.3	20			
	8000	- 1	470	16	5.7	27			
	10,000	-5	450	21	7.3	35			
	12,000	-9	425	25	8.9	44			

8 minutes, 2.9 gallons, 14nm

22 / 7 = 3.14 3.14 * 10% = 31% increase

8 * 1.31 = **10.5 minutes** 2.9 * 1.31 = 3.8 gallons 14 * 1.31 = **18.3nm**

+2 gal start/taxi/takeoff 3.8 + 2 = **5.8 gallons**

Cruise Performance (8000 ft.)

CRUISE PERFORMANCE

PRESSURE ALTITUDE 8000 FEET

CONDITIONS: 3100 Pounds Recommended Lean Mixture Cowl Flaps Closed

NOTE For best fuel economy, operate at the leanest mixture that results in smooth engine operation or at peak EGT.

			-									
			20 STAN	°C BELO NDARD 1 -21°C	W FEMP	S TEN	TANDAR IPERATU - 1 ⁰ C	ID JRE	20°C ABOVE STANDARD TEMP 19°C			
	RPM	MP	% BHP	KTAS	GPH	% BHP	KTAS	GPH	% BHP	KTAS	GPH	
	2400	25 23 21 19	76 68 61	140 134 126	14.4 13.0 11.6	79 72 65 58	146 140 133 126	15.1 13.7 12.4 11.1	75 69 62 55	145 139 132 124	14.3 13.0 11.8 10.6	
	2300	25 23 21 19	80 73 65 58	143 137 131 123	15.2 13.8 12.4 11.1	76 69 62 55	143 137 130 123	14.5 13.1 11.9 10.6	72 66 59 52	143 136 129 121	13.7 12.5 11.3 10.1	
	2200	25 23 21 19	77 70 62 55	141 135 128 121	14.6 13.2 11.9 10.6	73 66 59 53	140 134 127 120	13.9 12.6 11.3 10.2	69 63 56 50	140 133 126 118	13.1 12.0 10.8 9.7	
	2100	25 23 21 19 17	73 66 59 52 46	138 132 125 117 108	13.9 12.6 11.3 10.2 9.0	70 63 56 50 43	138 131 124 116 106	13.2 12.0 10.9 9.7 8.6	66 60 54 47 41	137 130 123 114 102	12.6 11.4 10.4 9.3 8.3	

13° C above standard 2200 RPM

21" manifold pressure

KTAS: 126 and 127 = 127 KTAS

% BHP: Interpolate 59% and 56%, or take higher value.

Fuel flow: Interpolate 11.3 and 10.8 BHP, or take higher value.

Cruise Performance - Interpolation

CRUISE PERFORMANCE

PRESSURE ALTITUDE 8000 FEET

CONDITIONS: 3100 Pounds Recommended Lean Mixture Cowl Flaps Closed

NOTE

For best fuel economy, operate at the leanest mixture that results in smooth engine operation or at peak EGT.

Interpolate between 11.3 and 10.8 GPH

$$(10.8 - 11.3)/(19 - -1) = -0.025$$

 $(13 - -1) = 14$
 $11.3 - 0.025 * 14 =$ **11.0 gph**

Interpolate between 59% and 56% BHP

(56-59)/(19--1)=-0.1559-0.15*14= **58 % bhp**

		20 STAN	°C BELO NDARD 1 -21°C	W TEMP	S TEN	TANDAR IPERATU - 1 ⁰ C	ID JRE	20°C ABOVE STANDARD TEMP 19°C			
RPM	MP	% BHP	KTAS	GPH	% BHP	KTAS	GPH	% BHP	KTAS	GPH	
2400	25 23 21 19	76 68 61	140 134 126	14.4 13.0 11.6	79 72 65 58	146 140 133 126	15.1 13.7 12.4 11.1	75 69 62 55	145 139 132 124	14.3 13.0 11.8 10.6	
2300	25	80	143	15.2	76	143	14.5	72	143	13.7	
	23	73	137	13.8	69	137	13.1	66	136	12.5	
	21	65	131	12.4	62	130	11.9	59	129	11.3	
	19	58	123	11.1	55	123	10.6	52	121	10.1	
2200	25	77	141	14.6	73	140	13.9	69	140	13.1	
	23	70	135	13.2	66	134	12.6	63	133	12.0	
	21	62	128	11.9	59	127	11.3	56	126	10.8	
2100	19	55	121	10.6	53	120	10.2	50	118	9.7	
	25	73	138	13.9	70	138	13.2	66	137	12.6	

RANGE PROFILE 45 MINUTES RESERVE 65 GALLONS USABLE FUEL

CONDITIONS: 3100 Pounds Recommended Lean Mixture for Cruise Standard Temperature Zero Wind

NOTE:

This chart allows for the fuel used for engine start, taxi, takeoff and climb, and the distance during a normal climb up to 12,000 feet and maximum climb above 12,000 feet.

RANGE - NAUTICAL MILES

45 MINUTES RESERVE 65 GALLONS USABLE FUEL

CONDITIONS: 3100 Pounds Recommended Lean Mixture for Cruise Standard Temperature

NOTE:

This chart allows for the fuel used for engine start, taxi, takeoff and climb, and the time during a normal climb up to 12,000 feet and maximum climb above 12,000 feet.

ENDURANCE - HOURS

Landing Distance (Short Field)

LANDING DISTANCE

SHORT FIELD

CONDITIONS: Flaps FULL

Power Off Maximum Braking Paved, Level, Dry Runway Zero Wind

NOTES:

- 1. Short field technique as specified in Section 4.
- Decrease distances 10% for each 9 knots headwind. For operation with tailwinds up to 10 knots, increase distances by 10% for each 2 knots.
- 3. For operation on a dry, grass runway, increase distances by 40% of the "ground roll" figure.
- 4. If a landing with flaps up is necessary, increase the approach speed by 9 KIAS and allow for 40% longer distances.

								28Y				
	SPEED AT 50 FT KIAS SPEED PRESS ALT FT	PRESS	0°C		10 ⁰ C		20 ⁰ C		30 ⁰ C		40 ⁰ C	
LBS		GRND ROLL	TOTAL TO CLEAR 50 FT OBS	GRND ROLL	TOTAL TO CLEAR 50 FT OBS							
2950	61	S.L. 1000 2000 3000 4000 5000 6000 7000 8000	560 580 600 625 650 670 700 725 755	1300 1335 1370 1410 1450 1485 1530 1575 1625	580 600 625 645 670 695 725 750 780	1335 1365 1405 1445 1485 1525 1575 1615 1665	600 620 645 670 695 720 750 780 810	1365 1400 1440 1485 1525 1565 1615 1665 1715	620 645 670 695 720 745 775 805 835	1400 1440 1525 1565 1610 1660 1710 1760	640 665 690 715 740 770 800 830 865	1435 1475 1515 1560 1600 1650 1700 1750 1805

Headwind: 4 knots Pressure altitude: 2500 Temperature: 20°C

Average 1440 and 1485 = 1462 ft. Average 645 and 670 = 658 ft.

 $4^{\circ} / 9^{\circ} = 0.44$, decrease 4.4%

0.95 * 1462 = **1389 ft. over 50' obs.** 0.95 * 658 = **625 ft. ground roll**

Landing Distance (Short Field) - Safety Factor

1389 ft. over 50' obs.625 ft. ground roll

Over 50' obstacle: 1389 * 1.5 = 2084 ft Ground roll: 625 * 1.5 = 938 ft

FLAPS 25° TAKEOFF GROUND ROLL

4100' press.

altitude

2300 lbs.

~1150 ft.

7 knots headwind

22° C

Summary

- Air and density
 - $\circ~$ International Standard Atmosphere
 - $\circ\,$ Types of Altitude
 - $\circ\,$ Types of Airspeed
 - How density affects performance
- Airplane performance charts
 - Computing performance values using Cessna charts