Performance and Limitations # **Objective** Gain an intuitive understanding of how atmospheric conditions affect aircraft performance, and how to use our airplane's performance charts to compute specific performance numbers. # **Motivation** Altitude, temperature, and pressure affect all aspects of our airplane's performance. All pilots need to understand how these factors affect the airplane, and what limitations are present in its design. Instruction: Known to unknown, building on aerodynamics # **Overview** - Air and density - Density altitude - International Standard Atmosphere - Types of altitude - Types of airspeed - How density affects performance - Airplane performance charts - Performance scenario using Cessna charts - Other chart styles - Additional aircraft limitations # **Performance Concepts** # **Air and Density** - Our airplane swims through the air, air molecules bounce off the airplane - As these air molecules are deflected downward, our airplane is forced upward - Our propeller pushes air backwards which pushes us forwards - Our engine "breaths" air from outside, burns that air with fuel to produce power # More lift Less lift DENSER AIR MOLECULES Shorter takeoff runs Longer takeoff runs ource: National Oceanic and Atmospheric Administration I By The New York Times # **High and Low Air Density** - All of this depends on how close the air molecules are together - Tightly spaced = more air to grab on to - Wings can produce more lift - Propeller can produce more thrust - Engines can produce more power - Density constantly changes with - i. Pressure - ii. Temperature - iii. Humidity # Thing That Affect Density: Ambient Pressure (Variable #1) - As we climb - Ambient pressure decreases - Air density decreases - Pressure decreases on average 1" Hg per 1000' (pressure lapse rate) - The pressure outside varies from day to day - On high pressure days, air is more dense - On low pressure days, air is less dense # Things That Affect Density: Temperature (Variable #2) - Hot air molecules bounce off each other more energetically - This causes the molecules to spread out and become less dense - Likewise, cold air molecules are less excited become more dense # **Humidity: Temperature (Variable #3)** - Water vapor in the air also takes up space - The higher the humidity, the lower the air density - Effect of density is small relative to pressure and temperature - Usually omitted from performance chats and calculations # **Rolling it All Up** - That's a lot of variables to consider - What if there was one number that would combine the effects of: - Altitude - Ambient pressure - Temperature # **International Standard Atmosphere (ISA)** - What if we made a fake atmosphere with known conditions? - Density can defined as an altitude in this atmosphere - The higher the altitude, the lower our airplane's performance - ISA Definitions - At sea level, the pressure is 29.92" Hg - Pressure lapses (reduces) at 1" Hg per 1000' - Temperature: 15° C at S.L. - Temperature lapse rate: 2°C per 1000' (to # **Computing Density Altitude** # 4000 ft. / 84° F, 29° C / 29.80" Hg - 1. Start with field elevation: 4000 ft. - 2. Correct for Variable Ambient Pressure - 4000 + 112' = 4112 - Pressure altitude - 3. Correct for Variable Temperature: - 4000' line & 29° F - ~6700' density altitude Notice higher temperature = Higher density altitude # Pressure altitude another way: Have the altimeter do the math - As you rotate the Kollsman window the altimeter moves up and down at that same rate 1" per 1000' - If we set our altimeter to 29.92" (the pressure of S.L. in the standard atmosphere), it will give us pressure altitude # **Density Altitude with an Electronic 56-B** - P-D/ALT mode - Set Indicated altitude IALT - Altimeter setting BARO - Outside temperature T°C - Gives - Pressure altitude PALT - Density altitude DALT # **Review of Altitude Types** - Ambient pressure/Altimeter setting: Set in the Kollsman window - Indicated altitude: Read directly off the altimeter - Pressure altitude: Height in the ISA where current pressure is found - **Density** altitude: Height in the ISA where the current pressure is found, plus any correction for temperature # **Airspeed** # **Pitot Tube As A Molecule Counter** - More forward movement: More molecules we hit - More air density: Molecules tightly spaced so more to hit - Less air density: Molecules less tightly spaced, less to hit - Tells us how many air molecules is moving over the wings # **Types of Airspeed: Calibrated Airspeed** - The pitot tube is attached at a certain angle - This might not be directly into the relative wind - With a high angle of attack, the relative wind will be at a steeper angle - To account for this, we compute calibrated airspeed - This is usually given in a table in the POH # **Types of Airspeed: True Airspeed** - Adjusts the "molecule count" based on the air density - Uses the same 3 variables: Altitude, pressure, temperature - True airspeed in the speed you're moving through the *air mass* # **True Airspeed with an Electronic E6B** ACT TAS Mode Pressure altitude (PALT): 4210' Outside air temperature (OAT): 29°C Calibrated airspeed (CAS): 118 knots Result TAS is 130.1 knots - This means we're flying *faster* through the air mass than the airspeed indicator would have us believe. - With no wind, we'd be moving 130 knots over the ground # **Types Of Airspeeds** - Indicated airspeed (IAS): Read from altimeter - Calibrated airspeed (CAS): Calibrated for position/instrument errors - At slow airspeeds this may be several knots off - True airspeed (TAS): CAS corrected for altitude and nonstandard temperature - Ground speed (GS): Actual speed over the ground - TAS adjusted for wind # **Knowledge Check** Assuming all other variables are the same: - Where will an airplane have a longer takeoff roll, in Denver or in Orlando? - Where will an airplane have a longer landing roll, when the temperature is 2° C or 30° C? - Which aircraft will have a higher ground speed on takeoff, when the pressure is 20.79" or 30.44" Hg? - When will our (normally-aspirated) airplane produce the most power, on the ground or at 8000 feet? # **Performance Planning** # **Performance** On a real flight we want to know: - How much runway distance we will use for takeoff - How long the flight will take - How much fuel we will burn - How mush landing distance we will use ### **CRUISE PERFORMANCE** ### PRESSURE ALTITUDE 2000 FEET CONDITIONS: 3100 Pounds Recommended Lean Mixture Cowl Flaps Closed ### NOTE For best fuel economy, operate at the leanest mixture that results in smooth engine operation or at peak EGT. | | | 20°C BELOW
STANDARD TEMP
-9°C | | | | TANDAR
1PERATU
11 ⁰ C | | 20°C ABOVE
STANDARD TEMP
31°C | | | | | |------|----------------------|-------------------------------------|-------------------|----------------------|----------------------|--|------------------------------|-------------------------------------|--------------------------|------------------------------|--|--| | RPM | MP | %
8HP | KTAS | GPH | %
BHP | KTAS | GPH | %
BHP | KTAS | GPH | | | | 2400 | 25
23
21
19 | 74
65
57 | 131
125
117 | 14.0
12.4
10.9 | 78
70
62
54 | 137
131
124
116 | 14.8
13.3
11.8
10.5 | 74
66
59
51 | 137
130
123
115 | 14.0
12.6
11.3
10.0 | | | | 2300 | 25 | 78 | 135 | 14.9 | 74 | 135 | 14.1 | 71 | 134 | 13.4 | | | | | 23 | 70 | 129 | 13.3 | 67 | 128 | 12.7 | 63 | 128 | 12.1 | | | | | 21 | 62 | 122 | 11.8 | 59 | 121 | 11.3 | 56 | 120 | 10.8 | | | | | 19 | 54 | 114 | 10.4 | 51 | 113 | 10.0 | 49 | 112 | 9.6 | | | | 2200 | 25 | 75 | 132 | 14.2 | 71 | 132 | 13.5 | 67 | 131 | 12.8 | | | | | 23 | 67 | 126 | 12.7 | 64 | 126 | 12.1 | 60 | 125 | 11.5 | | | | | 21 | 59 | 119 | 11.3 | 56 | 118 | 10.8 | 53 | 117 | 10.3 | | | | | 19 | 51 | 111 | 9.9 | 49 | 110 | 9.5 | 46 | 108 | 9.1 | | | | 2100 | 25 | 71 | 129 | 13.5 | 68 | 129 | 12.9 | 64 | 129 | 12.2 | | | | | 23 | 64 | 123 | 12.1 | 60 | 123 | 11.5 | 57 | 122 | 11.0 | | | | | 21 | 56 | 116 | 10.7 | 53 | 115 | 10.3 | 50 | 114 | 9.8 | | | | | 19 | 48 | 108 | 9.5 | 46 | 106 | 9.1 | 43 | 104 | 8.7 | | | | | 17 | 41 | 97 | 8.2 | 39 | 95 | 7.8 | 37 | 91 | 7.5 | | | # **Aircraft Performance Charts** - Published in our POH/AFM - Based on a new airplane, engine, and propeller - Based on a test pilot flying with excellent technique (airspeed control, proper leaning) - Formatted in a variety of ways - Some use pressure altitude+ temperature (Cessnas) - Some use density altitude only # **Takeoff Distance - Temperature** ### TAKEOFF DISTANCE **MAXIMUM WEIGHT 3100 LBS** CONDITIONS: Flaps 200 SHORT FIELD 2400 RPM and 31 Inches Hg Prior to Brake Release Mixture Full Rich Cowl Flaps Open Paved, Level, Dry Runway Zero Wind ### NOTES: - 1. Short field technique as specified in Section 4. - Decrease distances 10% for each 9 knots headwind. For operation with tailwinds up to 10 knots, increase distances by 10% for each 2 knots. 3. For operation on a dry, grass runway, increase distances by 15% of the "ground roll" figure. | | | | | ~ ~ | 17 | | 7 | 10 | مساران | -0 | <i>[</i> | ÷ | , / | |---------------|-------------|-----------------------|--|--|--|---|--|---|--|--|--|---|--| | | l SPE | TAKEOFF
SPEED PRES | | > 0°c | | IJ, | 10°C | 1910 | | 86: | 30°C | 104 | 40°C | | WEIGHT
LBS | LIFT
OFF | AS
AT
50 FT | ALT
FT | | TOTAL
TO CLEAR
50 FT OBS | | 3100 | 49 | 58 | S.L.
1000
2000
3000
4000
5000
6000
7000
8000 | 700
750
800
855
920
985
1055
1135
1220 | 1310
1390
1475
1570
1670
1780
1900
2035
2180 | 760
810
870
930
995
1070
1145
1235
1325 | 1415
1505
1600
1700
1815
1935
2070
2220
2385 | 820
880
940
1005
1080
1155
1245
1335
1440 | 1535
1630
1735
1850
1970
2110
2260
2425
2605 | 890
950
1015
1090
1165
1250
1345
1450
1560 | 1665
1770
1885
2010
2145
2300
2465
2650
2855 | 960
1025
1100
1175
1260
1355
1455
1565
1685 | 1805
1925
2050
2190
2345
2510
2700
2910
3140 | ### **Ground Roll** 5- - S.L. at 0° C: 700' - S.L. at 40° C: 960' - **260** ft. increase from temperature alone # **Takeoff Distance - Ground Roll vs Obstacle Clearance** # **Takeoff Distance - Wind** ### TAKEOFF DISTANCE MAXIMUM WEIGHT 3100 LBS CONDITIONS: Flaps 200 SHORT FIELD 2400 RPM and 31 Inches Hg Prior to Brake Release Mixture Full Rich Cowl Flaps Open Paved, Level, Dry Runway Zero Wind ### NOTES: - 1. Short field technique as specified in Section 4. - 2. Decrease distances 10% for each 9 knots headwind. For operation with tailwinds up to 10 knots, increase distances by 10% for each 2 knots. 3. For operation on a dry, grass runway, increase distances by 15% of the "ground roll" figure. | | | | ~ ^ | 334 6 | | | 100 h 100 h | | | 7 | · · · | | | |---------------|------|-------------------|--|--|--|---|--|---|--|--|--|---|--| | | | | PRESS | 5" | 0°C | J. | 10 ^o C | શ
(S) | 20°C | 86: | 30°C | 104 | 40 ^o C | | WEIGHT
LBS | LIFT | AS
AT
50 FT | ALT
FT | | TOTAL
TO CLEAR
50 FT OBS | | 3100 | 49 | 58 | S.L.
1000
2000
3000
4000
5000
6000
7000
8000 | 700
750
800
855
920
985
1055
1135
1220 | 1310
1390
1475
1570
1670
1780
1900
2035
2180 | 760
810
870
930
995
1070
1145
1235
1325 | 1415
1505
1600
1700
1815
1935
2070
2220
2385 | 820
880
940
1005
1080
1155
1245
1335
1440 | 1535
1630
1735
1850
1970
2110
2260
2425
2605 | 890
950
1015
1090
1165
1250
1345
1450
1560 | 1665
1770
1885
2010
2145
2300
2465
2650
2855 | 960
1025
1100
1175
1260
1355
1455
1565
1685 | 1805
1925
2050
2190
2345
2510
2700
2910
3140 | Sea level, 20°C 18 knot headwind: 20% decrease 820 * 0.8 = **656 ft.** 4 knot tailwind: 20% increase 820 * 1.2 = **984 ft.** 6 # **Realistic Performance** - Takeoff performance - New engine, new propeller - Test pilot with excellent technique - Landing performance - Excellent technique, energy management - No gusty winds, or gust factor - Maximum braking - A safety factor helps in managing this discrepancy - We'll use a safety factor of +50% for takeoff and landing # **Takeoff Distance - Safety Factor** Ground roll = 820 ft. Over 50' obstacle = **1535 ft.** With 50% safety factor: 820 * 1.5 = **1230 ft.** 1535 * 1.5 = **2302 ft.** # Time, Distance, Fuel to Climb (Normal Climb) - Altitude ### TIME, FUEL, AND DISTANCE TO CLIMB **NORMAL CLIMB - 95 KIAS** CONDITIONS: Flaps Up 2400 RPM 24 Inches Hg Mixture Full Rich Cowl Flaps Open Standard Temperature ### NOTES: - 1. Add 2.0 gallons of fuel for engine start, taxi and takeoff allowance. - 2. Increase time, fuel and distance by 10% for each 7°C above standard temperature. - 3. Distances shown are based on zero wind. | WEIGHT | PRESSURE | TEMP | RATE OF | | FROM SEA LE | VEL | |--------|----------------|------|--------------|------|----------------------|----------------| | LBS | ALTITUDE
FT | °C | CLIMB
FPM | TIME | FUEL USED
GALLONS | DISTANCE
NM | | 3100 | S.L. | 15 | 500 | 0 | 0 | 0 | | | 2000 | 11 | 500 | 4 | 1.4 | 6 | | | 4000 | 7 | 495 | 8 | 2.8 | 13 | | | 6000 | 3 | 485 | 12 | 4.3 | 20 | | | 8000 | -1 | 470 | 16 | 5.7 | 27 | | | 10,000 | -5 | 450 | 21 | 7.3 | 35 | | l | | | | | | | Airport: 4000' Cruise: 8000' 16 - 8 = 8 minutes 5.7 - 2.8 = 2.9 gallons 27 - 13 = 14nm Climb rate decreases as we ascend # Time, Distance, Fuel to Climb (Normal Climb) - Temperature ### TIME, FUEL, AND DISTANCE TO CLIMB NORMAL CLIMB - 95 KIAS CONDITIONS: Flaps Up 2400 RPM 24 Inches Hg Mixture Full Rich Cowl Flaps Open Standard Temperature ### NOTES: - 1. Add 2.0 gallons of fuel for engine start, taxi and takeoff allowance. - 2. Increase time, fuel and distance by 10% for each 7°C above standard temperature. - Distances shown are based on zero wind. | WEIGHT | PRESSURE | TEMP | RATE OF | | FROM SEA LE | VEL | |--------|----------------|------|--------------|------|----------------------|----------------| | LBS | ALTITUDE
FT | °C | CLIMB
FPM | TIME | FUEL USED
GALLONS | DISTANCE
NM | | 3100 | S.L. | 15 | 500 | 0 | 0 | 0 | | | 2000 | 11 | 500 | 4 | 1.4 | 6 | | | 4000 | 7 | 495 | 8 | 2.8 | 13 | | | 6000 | 3 | 485 | 12 | 4.3 | 20 | | | 8000 | -1 | 470 | 16 | 5.7 | 27 | | | 10,000 | -5 | 450 | 21 | 7.3 | 35 | | | 12,000 | -9 | 425 | 25 | 8.9 | 44 | | | | | | | | | 8 minutes, 2.9 gallons, 14nm 14°C above standard 20% increase 8 * 1.2 = **9.6** minutes 2.9 * 1.2 = 3.5 gallons 14 * 1.2 = **16.8nm** +2 gal start/taxi/takeoff 3.5 + 2 = 5.5 gallons # **Cruise Performance - Altitude and Temperature** # CRUISE PERFORMANCE PRESSURE ALTITUDE 2000 FEET CONDITIONS: 3100 Pounds Recommended Lean Mixture Cowl Flaps Closed ### NOTE For best fuel economy, operate at the leanest mixture that results in smooth engine operation or at peak EGT. # CRUISE PERFORMANCE PRESSURE ALTITUDE 10,000 FEET CONDITIONS: 3100 Pounds Recommended Lean Mixture Cowl Flaps Closed ### NOTE For best fuel economy, operate at the leanest mixture that results in smooth engine operation or at peak EGT. | | | | °C BELO
NDARD 1
-9°C | | | TANDAR
IPERATU
11 ⁰ C | | ı | 20°C ABOVE
STANDARD TEMP
31°C | | | | | |------|----------------------|----------------------|----------------------------|------------------------------|----------------------|--|------------------------------|----------------------|-------------------------------------|------------------------------|--|--|--| | RPM | MP | %
BHP | KTAS | GPH | %
BHP | KTAS | GPH | %
BHP | KTAS | GPH | | | | | 2400 | 25
23
21
19 | 74
65
57 | 131
125
117 | 14.0
12.4
10.9 | 78
70
62
54 | 137
131
124
116 | 14.8
13.3
11.8
10.5 | 74
66
59
51 | 137
130
123
115 | 14.0
12.6
11.3
10.0 | | | | | 2300 | 25
23
21
19 | 78
70
62
54 | 135
129
122
114 | 14.9
13.3
11.8
10.4 | 74
67
59
51 | 135
128
121
113 | 14.1
12.7
11.3
10.0 | 71
63
56
49 | 134
128
120
112 | 13.4
12.1
10.8
9.6 | | | | | 2200 | 25
23
21
19 | 75
67
59
51 | 132
126
119
111 | 14.2
12.7
11.3
9.9 | 71
64
56
49 | 132
126
118
110 | 13.5
12.1
10.8
9.5 | 67
60
53
46 | 131
125
117
108 | 12.8
11.5
10.3
9.1 | | | | | 2100 | 25
23
21
19 | 71
64
56
48 | 129
123
116
108 | 13.5
12.1
10.7
9.5 | 68
60
53
46 | 129
123
115
106 | 12.9
11.5
10.3
9.1 | 64
57
50
43 | 129
122
114
104 | 12.2
11.0
9.8
8.7 | | | | | | | | OC BELO
IDARDA
-25 ⁰ C | | | FANDAR
IPERATU
- 5 ⁰ C | | 20°C ABOVE
STANDARD TEMP
15°C | | | | | |------|----------------------|----------------------|---|------------------------------|----------------------|---|------------------------------|-------------------------------------|--------------------------|------------------------------|--|--| | RPM | MP | %
BHP | KTAS | GPH | %
BHP | KTAS | GPH | %
BHP | KTAS | GPH | | | | 2400 | 25
23
21
19 | 76
69
62 | 143
136
129 | 14.5
13.1
11.7 | 79
72
66
59 | 148
142
136
128 | 15.1
13.8
12.5
11.2 | 75
69
62
56 | 148
142
135
127 | 14.3
13.1
11.9
10.7 | | | | 2300 | 25 | 80 | 146 | 15.2 | 76 | 146 | 14.5 | 72 | 145 | 13 7 | | | | | 23 | 73 | 140 | 13.9 | 70 | 140 | 13.2 | 66 | 139 | 12.5 | | | | | 21
19 | 66
59 | 134
126 | 12.5
11.3 | 63
56 | 133
125 | 12.0
10.8 | 60
53 | 132
124 | 11.4
10.3 | | | | 2200 | 25
23
21
19 | 77
70
63
56 | 143
137
131
123 | 14.6
13.3
12.0
10.8 | 73
67
60
53 | 143
137
130
122 | 13.9
12.7
11.5
10.3 | 69
63
57
51 | 142
136
129
120 | 13.2
12.0
10.9
9.9 | | | | 2100 | 25
23
21
19 | 74
67
60
53 | 140
135
128
120 | 14.0
12.7
11.5
10.4 | 70
64
57
51 | 140
134
127
119 | 13.3
12.1
11.0
9.9 | 66
60
54
48 | 139
133
125
116 | 12.6
11.5
10.5
9.5 | | | ### **RANGE PROFILE 45 MINUTES RESERVE 65 GALLONS USABLE FUEL** CONDITIONS: 3100 Pounds Recommended Lean Mixture for Cruise Standard Temperature Zero Wind ### NOTE: This chart allows for the fuel used for engine start, taxi, takeoff and climb, and the distance during a normal climb up to 12,000 feet and maximum climb above 12,000 feet. ### **RANGE - NAUTICAL MILES** ### **ENDURANCE PROFILE** ### **45 MINUTES RESERVE 65 GALLONS USABLE FUEL** CONDITIONS: 3100 Pounds Recommended Lean Mixture for Cruise Standard Temperature ### NOTE: This chart allows for the fuel used for engine start, taxi, takeoff and climb, and the time during a normal climb up to 12,000 feet and maximum climb above 12,000 feet. **ENDURANCE - HOURS** # **Landing Distance (Short Field)** ### LANDING DISTANCE SHORT FIELD ### CONDITIONS: Flaps FULL Power Off Maximum Braking Paved, Level, Dry Runway Zero Wind ### NOTES: - 1. Short field technique as specified in Section 4. - Decrease distances 10% for each 9 knots headwind. For operation with tailwinds up to 10 knots, increase distances by 10% for each 2 knots. - 3. For operation on a dry, grass runway, increase distances by 40% of the "ground roll" figure. - 4. If a landing with flaps up is necessary, increase the approach speed by 9 KIAS and allow for 40% longer distances. | | 20 | 1 | |---|----|---| | Ł | 45 | r | | | SPEED PRESS | | 0°C | | 10 ⁰ C | | | 20°C | , | 30°C | 40°C | | | |---------------|---------------|---|--|--|---|--|---|--|---|--|---|--|--| | WEIGHT
LBS | 50 FT
KIAS | ALT
FT | GRND TO CLEAR FOLL FO | | | TOTAL
TO CLEAR
50 FT OBS | | TOTAL
TO CLEAR
50 FT OBS | | | | | | | 2950 | 61 | S. L.
1000
2000
3000
4000
5000
6000
7000
8000 | 560
580
600
625
650
670
700
725
755 | 1300
1335
1370
1410
1450
1485
1530
1575
1625 | 580
600
625
645
670
695
725
750
780 | 1335
1365
1405
1445
1485
1525
1575
1615 | 600
620
645
670
695
720
750
780
810 | 1365
1400
1440
1485
1525
1565
1615
1665
1715 | 620
645
670
695
720
745
775
805
835 | 1400
1440
1480
1525
1565
1610
1660
1710
1760 | 640
665
690
715
740
770
800
830
865 | 1435
1475
1515
1560
1600
1650
1700
1750
1805 | | Headwind: 9 knots Pressure altitude: S.L. Temperature: 20°C Decrease distances 10% 0.9 * 600 = **540 ft. ground roll** 0.9 * 1365 = 1231 ft. over 50' obs. # **Landing Distance (Short Field) - Safety Factor** 540 ft. ground roll 1231 ft. over 50' obs. Ground roll: 540 * 1.5 = **810 ft** Over 50' obstacle: 1231 * 1.5 = **1846 ft** ### FLAPS 25° TAKEOFF GROUND ROLL ASSOCIATED CONDITIONS Power: FULL THROTTLE BEFORE BRAKE RELEASE Air Conditioner: OFF Runway: PAVED, LEVEL, & DRY Airspeed: REFER TO TABLE AT RIGHT Propeller: SENSENICH 76EM8S14-0-62 TAKEOFF SPEEDS KIAS WT LIFTOFF 2,550 55 2,450 55 2,350 53 2,250 50 | EXAMPLE | | |------------------------------|-----------| | Depart Airport Pressure Alt: | 2,000 Ft. | | Temperature: | 23° C | | Gross Weight: | 2,400 Lb. | | Headwind: | 8 Kt. | | Takeoff Cround Poll: | 1 071 Et | 4100' press. altitude 22° C 2300 lbs. 7 knots headwind ~1150 ft. # Differences between Actual and Estimated Performance - Conditions are different from forecast - Pilot technique - Takeoff - Landing - Engine leaning - Age of engine, propeller, airframe - Runway slope: Up or down - Wet runway: Braking action # Limitations # Where do we find limitations? CESSNA MODEL T182 SECTION 2 LIMITATIONS Page # SECTION 2 LIMITATIONS ### **TABLE OF CONTENTS** | Introduction | | | | | | | | 2-3 | |----------------------------------|--|--|--|--|--|--|--|-----| | Airspeed Limitations | | | | | | | | | | Airspeed Indicator Markings | | | | | | | | 2-5 | | Power Plant Limitations | | | | | | | | 2-5 | | Power Plant Instrument Markings | | | | | | | | 2-6 | | Weight Limits | | | | | | | | 2-7 | | Center Of Gravity Limits | | | | | | | | 2-7 | | Maneuver Limits | | | | | | | | | | Flight Load Factor Limits | | | | | | | | 2-8 | | Kinds Of Operation Limits | | | | | | | | 2-8 | | Fuel Limitations | | | | | | | | | | Maximum Operating Altitude Limit | | | | | | | | | | Other Limitations | | | | | | | | 2-9 | | Flap Limitations | | | | | | | | 2-9 | | Placards | | | | | | | | 2-9 | | | | | | | | | | | - POH limitations section - Placards and markings - Performance charts # **Engine Limitations** ### POWER PLANT LIMITATIONS Engine Manufacturer: Avco Lycoming. Engine Model Number: O-540-L3C5D. Maximum Power: 235 BHP rating. Engine Operating Limits for Takeoff and Continuous Operations: Maximum Engine Speed: 2400 RPM. Maximum Manifold Pressure: 31 in, Hg. Maximum Cylinder Head Temperature: 500°F (260°C). Maximum Oil Temperature: 245°F (118°C). Oil Pressure, Minimum: 25 psi. Maximum: 115 psi. Fuel Pressure, Minimum: 3.0 psi. Maximum: 30.0 psi. uel Grade: See Fuel Limitations. Oil Grade (Specification): MIL-L-6082 Aviation Grade Straight Mineral Oil or MIL-L-22851 Ashless Dispersant Oil. # **Airspeed Limitations** | | SPEED | KCAS | KIAS | REMARKS | |-----------------|---|------------------|------------------|--| | V _{NE} | Never Exceed Speed | 175 | 178 | Do not exceed this speed in any operation. | | V _{NO} | Maximum Structural
Cruising Speed | 138 | 140 | Do not exceed this speed except in smooth air, and then only with caution. | | VA | Maneuvering Speed:
3100 Pounds
2600 Pounds
2100 Pounds | 110
100
90 | 111
101
90 | Do not make full or abrupt control movements above this speed. | | V _{FE} | Maximum Flap Extended
Speed:
To 10 ^o Flaps
10 ^o - FULL Flaps | 138
95 | 140
95 | Do not exceed these speeds with the given flap settings. | | | Maximum Window Open
Speed | 175 | 178 | Do not exceed this speed with windows open. | # **Load Factor Limits** ### FLIGHT LOAD FACTOR LIMITS Flight Load Factors: *Flaps Up: +3.8g, -1.52g *Flaps Down: +2.0g *The design load factors are 150% of the above, and in all cases, the structure meets or exceeds design loads. # **Operating Limits** ### MAXIMUM OPERATING ALTITUDE LIMIT Certificated Maximum Operating Altitude: 20,000 Ft. ### OTHER LIMITATIONS ### **FLAP LIMITATIONS** Approved Takeoff Range: 0° to 20°. Approved Landing Range: 0° to FULL. # **High Temperatures** Is it advisable to fly when it's $> 40^{\circ}$ C? ### TAKEOFF DISTANCE MAXIMUM WEIGHT 3100 LBS CONDITIONS: Flaps 200 SHORT FIELD 2400 RPM and 31 Inches Hg Prior to Brake Release Mixture Full Rich Cowl Flaps Open Paved, Level, Dry Runway Zero Wind ### NOTES: 1. Short field technique as specified in Section 4. 2. Decrease distances 10% for each 9 knots headwind. For operation with tailwinds up to 10 knots, increase distances by 10% for each 2 knots. For operation on a dry, grass runway, increase distances by 15% of the "ground roll" figure. | | - | | | ~ ~ | 12 | 2 | 12 m | 10 | أرور | | F | ٥ | 1 | |---------------|--------------------------|-------------|------------------------------|-------------------------|---|--|--|---|---|---|--|---|---| | WEIGHT
LBS | TAKEOFF
SPEED
KIAS | | PRESS
ALT | >%.c | | 10°C | | € 30°C | | 86 30°C | | 104 40°C | | | | | | | | TOTAL | | TOTAL | | TOTAL | 1 | TOTAL | | TOTAL | | | LIFT
OFF | AT
50 FT | FT | | | | | | | | | | TO CLEAR
50 FT OBS | | 3100 | 49 | 58 | S.L.
1000 | 700
750 | 1310
1390 | 760
810 | 1415
1505 | 820
880 | 1535
1630 | 890
950 | 1665
1770 | 960 | 1805
1925 | | | | | 2000
3000 | 800
855 | 1475
1570 | 870
930 | 1600
1700 | 940
1005 | 1735 | 1015
1090 | 1885
2010 | 1100 | 2050
2190 | | | | | 4000
5000 | 920
985 | 1670
1780 | 995
1070 | 1815
1935 | 1080
1155 | 1970
2110 | 1165
1250 | 2145
2300 | 1260
1355 | 2345
2510 | | | | | 7000 | 1055
1135
1220 | 2035 | 1145
1235
1325 | 2070
2220
2385 | 1245
1335
1440 | 2260.
2425
2605 | 1450 | 2650 | 1455
1565 | 2700
2910
3140 | | | LBS | /EIGHT KI | SPEED KIAS LIFT AT OFF 50 FT | SPEED KIAS ALT FT | TAKEOFF SPEED KIAS ALT FT GRND ROLL 3100 49 58 S.L. 700 1000 750 2000 800 3000 855 4000 920 5000 985 6000 1055 7000 1135 | TAKEOFF SPEED KIAS LIFT AT OFF 50 FT SO S | TAKEOFF SPEED KIAS LIFT AT OFF 50 FT SO TO CLEAR ROLL CLE | TAKEOFF SPEED KIAS LIFT AT OFF 50 FT SO | TAKEOFF SPEED KIAS LIFT AT OFF 50 FT 3100 49 58 S.L. 700 100 100 100 100 100 100 100 | TAKEOFF SPEED KIAS LIFT AT OFF 50 FT FT GRND TO CLEAR ROLL | TAKEOFF SPEED KIAS LIFT AT OFF 50 FT 3100 49 58 S.L. 700 100 100 100 100 100 100 100 | TAKEOFF SPEED KIAS LIFT AT OFF 50 FT SO | TAKEOFF SPEED KIAS LIFT AT OFF 50 FT 3100 49 58 S.L. 700 1310 760 1415 870 870 870 870 870 870 870 87 | # Summary - Performance concepts - Air and density - International Standard Atmosphere - Types of Altitude - Types of Airspeed - How density affects performance - Airplane performance charts - Computing performance values using Cessna charts - Airplane limitations