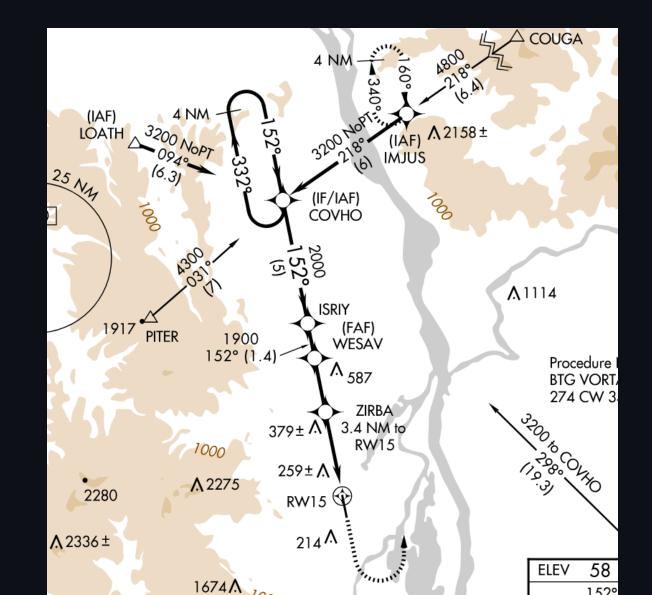
**Approaches - Types, Limitations, Regulations** 

#### **Objective**

To demonstrate the kinds of approaches, approach limitations, and regulations that govern how we fly approach procedures.

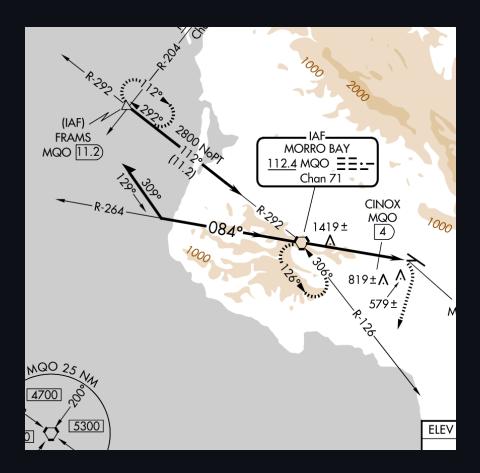
Introduce basic approach concepts for precision, non-precision, GPS, and other types of approaches.

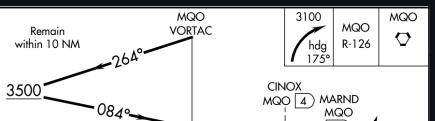
#### **Overview**


- Getting established on an approach
- Types of approaches
  - Precision (ILS)
  - Non-precision (VOR)
  - GPS approaches (LNAV, LPV)
- When can we land?
- Circle to land, sidesteps

- Other Approach Types
  - LDA Approaches
  - Backcourse Approaches
  - Visual and Contact Approaches
- Inoperative Equipment
- Cold Weather Operations

# Getting Established on an Approach


How do we get from the enroute phase to the final approach phase?

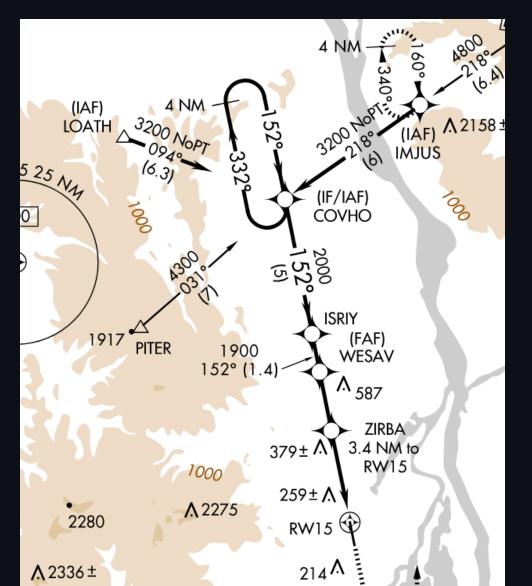

- **Direct to an IAF** (e.g. LOATH)
- Published feeder routes (e.g. COUGA)
- Vectors to final
  - ATC-assigned headings,
     intercept to the final approach
     course
  - Entry behind the FAF



AIM 5-4-6, IFH Ch 10

#### **Procedure Turns**






A published 180-degree turn to align you with the final approach course.

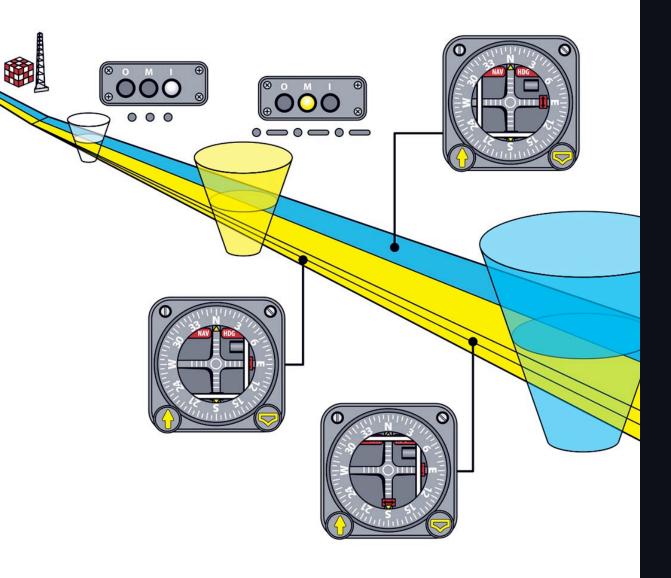
- Types of turns, up to the pilot what to use
  - 45/180
  - 80/260
  - Teardrop
  - Racetrack
- Protected turn area, "Remain within 10NM"
- Descend to lower altitude after established inbound

AIM 5-4-9, IFH Ch 10

# **Hold-in-Lieu of Procedure Turn (HILPT)**



- Published hold used for getting you aligned with final approach course (e.g. PITER transition)
- Fly standard hold entry and begin the approach
- ATC will not expect you to make additional turns in the hold
- These are become more common than barbed PTs


AIM 5-4-9, IFH Ch 10

# When *not* to Fly a PT/HILPT - SNoRT

- **S:** "Straight-in approach" from ATC
  - "Cross COVHO at 2000, cleared straight-in RNAV runway 15 approach Scappoose airport"
- No: NoPT on approach chart
- R: Radar vectored
  - "Turn right heading 100, vectors for final approach course"
- **T:** Timed approach from a fix

(IF/IAF) COVHO **ISRIY** 1917 (FAF) WESAV л <sub>587</sub> ZIRBA 3.4 NM to 379± **∧ RW15** 259±/ **1** 2275 2280 RW15 🕸 ↑ 2336± 214 /

AIM 5-4-9, IFH 10-13

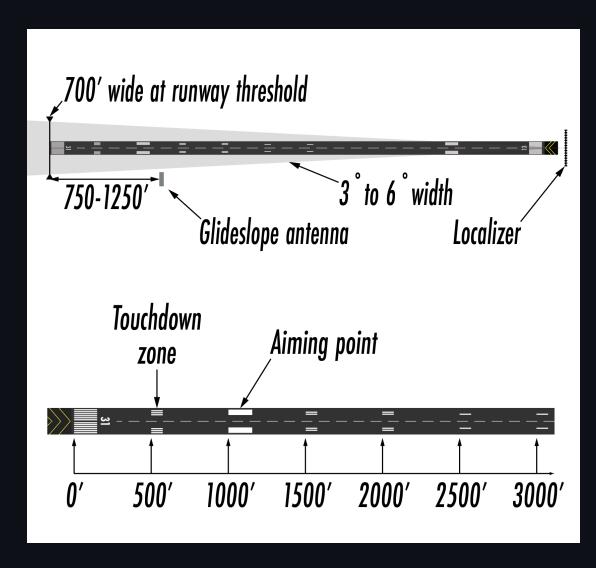


# **Approach Types**

- Precision
- Non-precision
- GPS Approaches

# **Precision Approaches**

Precision approaches are characterized by **vertical and horizontal guidance** that position the aircraft close to the runway from where it can safely land.

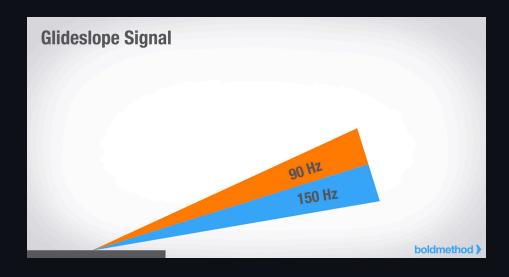

Type of precision approaches:

- PAR Precision approach radar
- **GLS** GBAS landing system
- ILS Instrument landing system

#### ILS typically have minimums of 200 feet above TDZE

AIM 5-4-5, 5-4-11, IFH Ch 10

# **Components of an ILS**




#### Localizer:

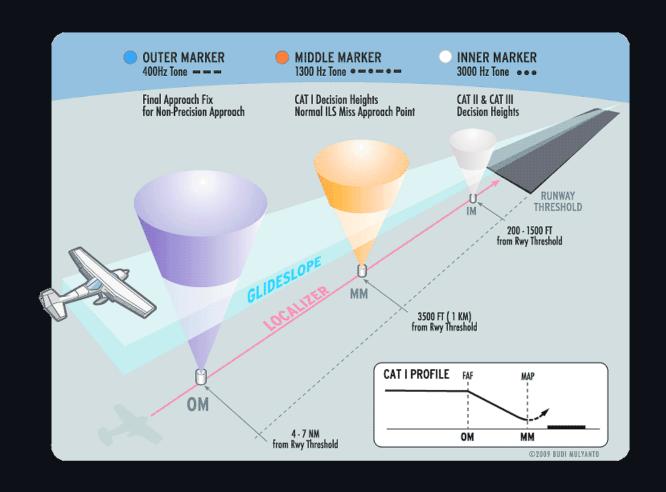
- Positioned at the end of the runway
- Angular width is 700' wide at the threshold
- Gives precise L/R angular guidance aligned with the runway
- Note: Sensitivity depends on runway length

AIM 1-1-9, IFH Ch 10

## **Components of an ILS**

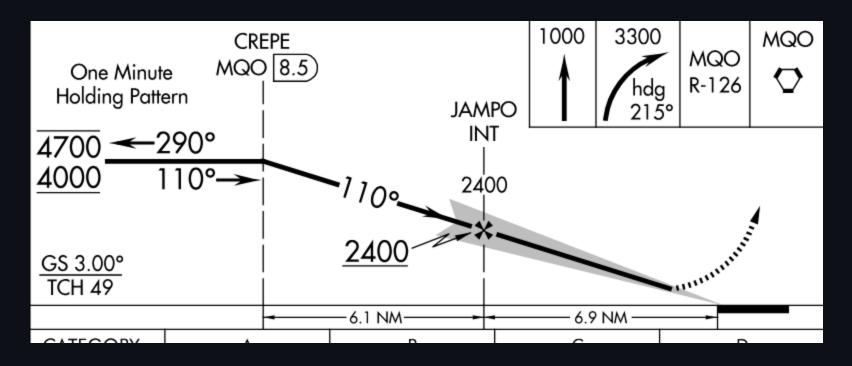


#### **Glideslope:**


- Positioned to the side of the runway
- Gives angular vertical guidance, usually a 3° glideslope
- Gets more sensitive as we get closer to the runway
- Note: There can be interference on the glideslope signal which can cause "false" glideslopes

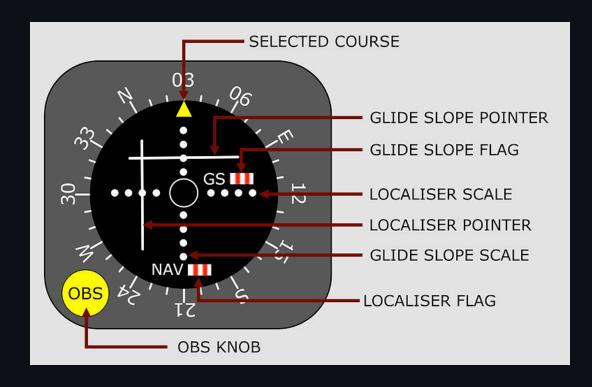
#### **ILS Marker Beacons**

Used to be standard on an ILS. They were identified with a tone and light on the audio panel.


- Outer marker: FAF (tone)
- Middle marker: Standard minimums (tone)
- Inner marker: Used to identify lower minimums of CAT II or III ILS (tone)

We now use DME, 2nd VOR, or GPS to identify these points



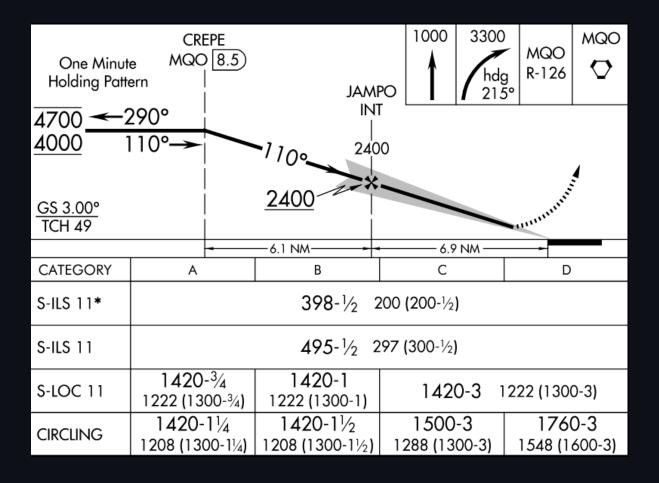

AIM 1-1-9

# **Capturing an ILS**



- Glideslope needle starts above us
- As we approach the GS intercept (lightning bolt), glideslope needle will come down
- One dot below glideslope: Reconfigure for your approach

# Flying an ILS




Fly to keep the needles centered

- GS needle moves up: Too low
- GS needle moves down: Too high
- LOC needle moves left: Right of course
- LOC needle moves right: Left of course

Both needles get more sensitive as we get closer to the runway.

# **Precision Approaches Minimums**



- We fly our glideslope and localizer until the **Decision** Altitude
- DA is listed in MSL altitude., along with required flight visibility
  - E.g. 398 ft MSL, 1/2 s.m. vis.
- At the D.A. we can continue our descent if we have the required visibility and have the runway envionment in sight
  - More on this

#### When Can We Land? - FAR 91.175

An aircraft may not descend from the DA/MDA unless:

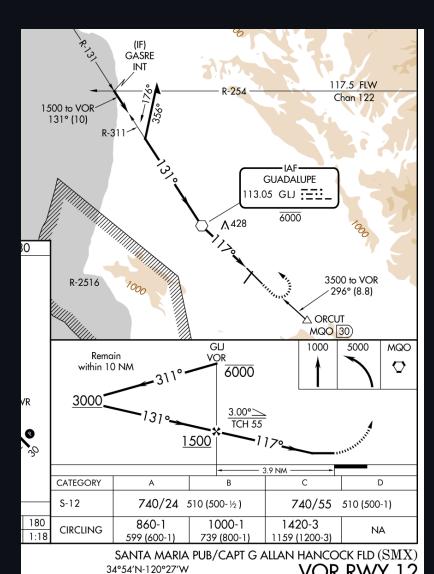
- 1. Aircraft is continuously in a position from which a descent to a landing can be made on the intended runway
- 2. The descent can be made at a normal rate of descent using normal maneuvers
- 3. For 121/135 ops: A descent that allows for touchdown in the touchdown zone
- 4. The flight visibility must be greater than prescribed on the chart
- 5. At least one of the following visual references for the intended runway is visible

#### **Visual References**

- Approach lighting system\*
- Threshold marking/lights
- Runway end identifier lights (REILs)
- PAPI/VASI
- Touchdown markings/lights
- Runway or runway markings
- Runway lights



\*The red terminating bars allow you to descend to 100' above TDZ (regardless of the approach)


## **Non-Precision Approaches**

Non-precision approaches are characterized by **step-down fixes** and a **minimum descent altitude (MDA)** .

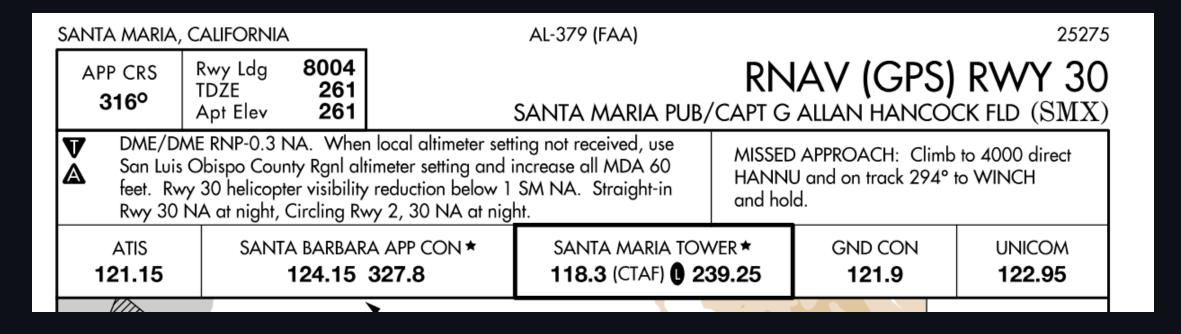
#### Types:

- **VOR** VOR approach
- TACAN TACAN approach
- **LOC** Localizer approach
- LDA Localizer directional aid
- LOC BC Localizer back course approach
- **ASR** Approach surveillance radar

# Flying a Non-Precision Approach



- Use the primary navaid for L/R guidance
- Descent to the lowest altitude for each segment based on the profile view
- After the final step-down fix, descend to the approariate MDA
- Fly at the MDA until
  - The runway is in sight and a landing can be made (91.175)
  - Or, the missed approach point and execute the missed procedure


# Flying VOR Approaches with RNAV

**AIM 1-2-3:** "Use of a suitable RNAV system as a means to navigate on the final approach segment of an instrument approach procedure based on VOR, TACAN or NDB signal is allowable."

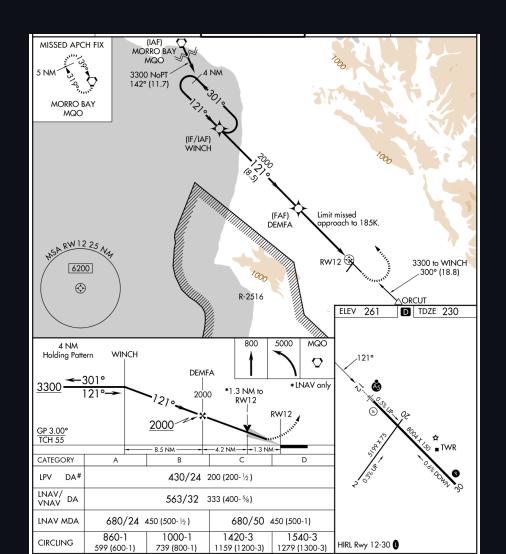
#### **Requirements:**

- The underlying NAVAID must be operational
- The NAVAID must be monitored for the final approach course alignment
- Secondary CDI or bearing pointer should monitor the underlying NAVAID
- Guidance can be used from the GPS

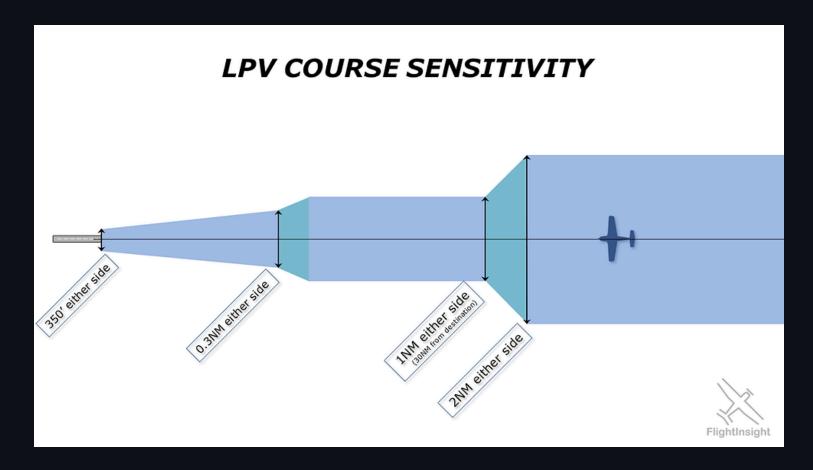
# **RNAV (GPS) Approaches**



#### **Approaches with Vertical Guidance:**

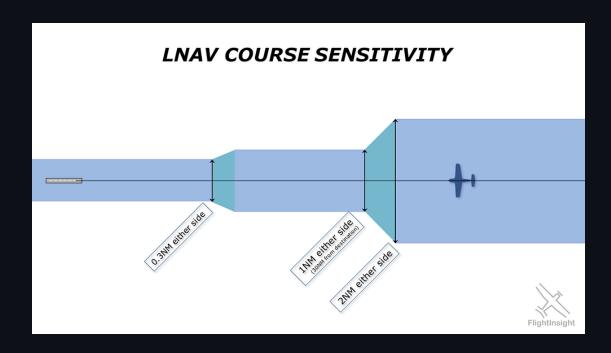

- LPV: Localizer Performance with Vertical guidance
- LNAV/VNAV: Lateral/vertical navigation

#### **Without Vertical Guidance:**


- **LP** Akin to a LOC approach
- LNAV Lateral guidance

# LPV Approaches: Localizer Performance with Vertical Guidance

- ILS-like minimums (200' minima)
- Flown just like an ILS:
  - Intercept the "localizer"
  - Capture the glideslope from below
- Gives angular L/R guidance which gets more sensitive as you descend
- Not technically a "precision approach" (for the purposes of alternate planning)




# **LPV Approach CDI Sensitivity**



- CDI sensitivity becomes more accurate as you get closer to the runway
- Final segment has angular guidance like an ILS

## **LNAV/VNAV Lateral/vertical Approaches**



- Final approach has fixed 0.3NM sensitivity (not angular like LPV)
- Doesn't require a WAAS-based navigator
- These were initially designed for baro-aided FMS systems
- Garmin annunciation: Garmin L/VNAV

#### **GPS Mode Annunications**



• ENR: Enroute

• **TERM**: Terminal

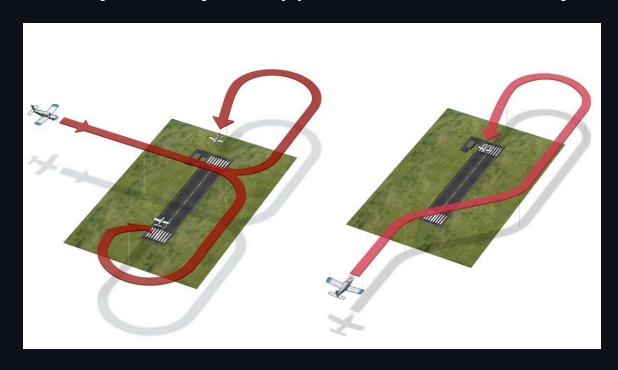
• LNAV: Lateral navigation

- **LNAV** +**V**: Lateral navigation w/ advisory vertical guidance
- **LP**: Localizer performance
- **LP +V**: Localizer performance w/ advisory vertical guidance



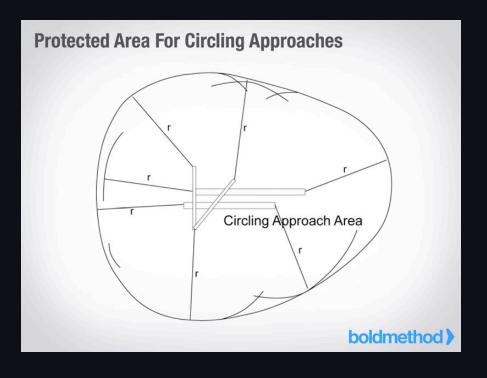
# **Advisory Vertical Guidance**

LP+V, LNAV+V


A glideslope generated the navigator which meets the crossing requirements of the step-down fixes of a non-precision approach.

Follow the guidance to the MDA (not a DA).

IFH Ch 10

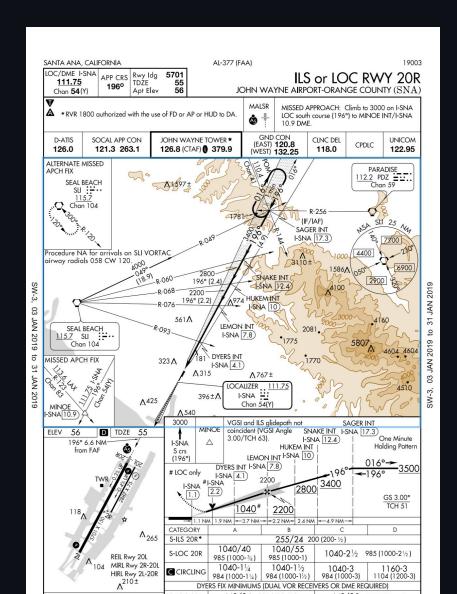

# **Circling Approaches**

Allow you to fly an approach to one runway, but "circle" to land on a different runway



- This requires **higher minimums** to ensure obstacle clearance
- Should maneuver to the "shortest path to the base or downwind leg"
- Missed approach procedure:
  - Climbing turn towards the runway, the execute missed turn procedure
  - Additional turns in the protected area may be required

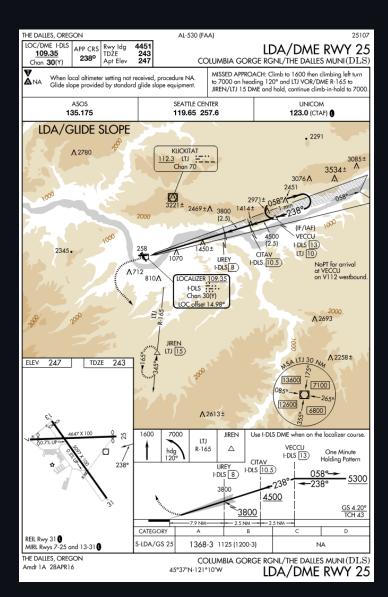
# **Circling Approach Minimums**




|                  |                                         | 0.01411 |                       |  |                         |             |                         |  |
|------------------|-----------------------------------------|---------|-----------------------|--|-------------------------|-------------|-------------------------|--|
| CATEGORY         | Α                                       |         | В                     |  | С                       |             | D                       |  |
| LPV DA#          | 430/24 200 (200-1/2)                    |         |                       |  |                         |             |                         |  |
| LNAV/<br>VNAV DA | 563/32 333 (400-5%)                     |         |                       |  |                         |             |                         |  |
| LNAV MDA         | 680/24 450 (500-1/2) 680/50 450 (500-1) |         |                       |  |                         | 150 (500-1) |                         |  |
| CIRCLING         | 860-1<br>599 (600-1)                    |         | 1000-1<br>739 (800-1) |  | 1420-3<br>1159 (1200-3) |             | 1540-3<br>1279 (1300-3) |  |

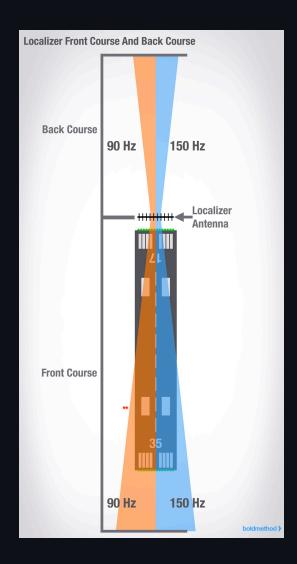
|           | 3.7 TVIVI            | - 3 TAIM             | 2.0 N               | M - 2.7 NM    | 0.5                     |  |  |  |  |  |  |
|-----------|----------------------|----------------------|---------------------|---------------|-------------------------|--|--|--|--|--|--|
| CATEGORY  | Α                    | В                    | С                   | D             | E                       |  |  |  |  |  |  |
| S-ILS 10L |                      | 293/24 263 (300-1/2) |                     |               |                         |  |  |  |  |  |  |
| S-LOC 10L | 420/24 3             | 390 (400-1/2)        | 420/35 390 (400-5%) |               |                         |  |  |  |  |  |  |
| CIRCLING  | 720-1<br>689 (700-1) | 760-1<br>729 (800-1) | 1060-3              | 1029 (1100-3) | 1140-3<br>1109 (1200-3) |  |  |  |  |  |  |

**Expanded circling protections:** Introduced in 2012, indicated by negative C on minima line


# **Sidestep Maneuver**



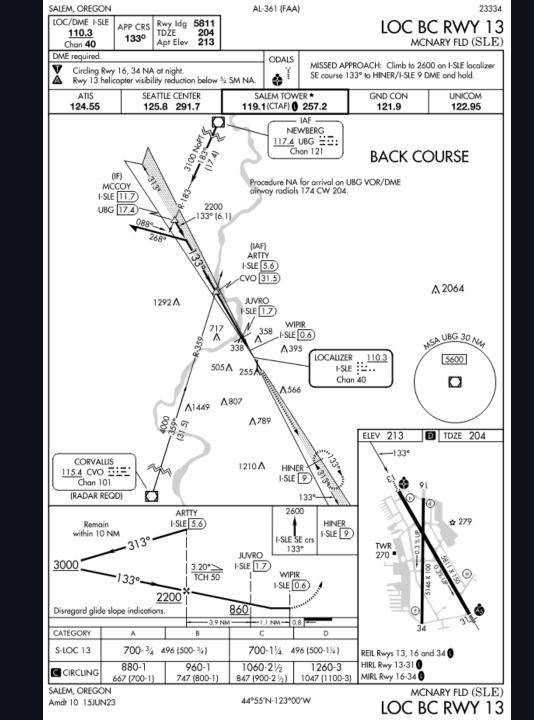
- Parallel runways less than 1200 ft. apart
- ATC can say "cleared ILS runway 20R approach, side-step runway 20L"
- Commence the side-step maneuver as soon as possible after the runway or runway environment is in sight


AIM 5-4-19

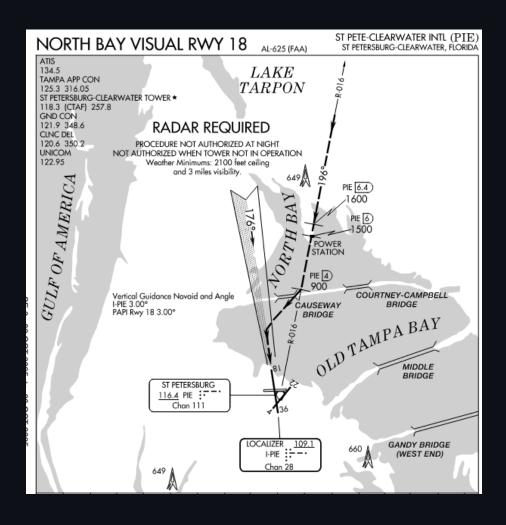
# **LDA - Localizer Directional Aid Approaches**



- Localizer (and sometimes glideslope) which provide approach guidance **not aligned with a runway**
- Example: KDLS LDA/DME RWY 25
- They are **non-precision approaches**, even if they had a glideslope
- S-LDA minimums are treated as an MDA


# **Localizer Backcourse Approaches - LOC BC**




The signal from a localizer also extends behind the primary runway, and can be used to guidance to the opposing runway.

- Disregard any glideslope indication
- A standard CDI will be read L/R backwards
  - Fly away from the needle instead of towards it
  - "You are the needle"
- With an HSI, set the **inbound/front course** into your OBS
  - Then the green needles will read correctly (since the needles are flipped upside down)

Example LOC BC
Approach - KSLE LOC BC
RWY 13



# **Visual and Contact Approaches**



#### **Visual Approaches:**

- If the airport has VFR weather (1000 + 3),
   controllers can assign a visual approach
- We're still IFR, so VFR cloud clearance rules (91.255) don't apply
- Expectation that we land visually, traffic + terrain clearance is our responsibility

#### **Charted Visual Procedures:**

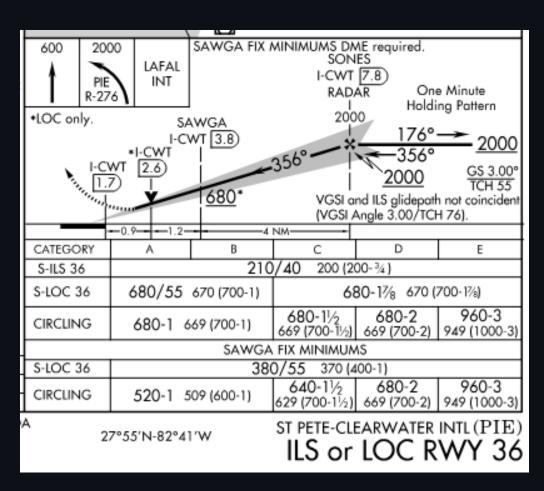
- These are uncommon
- Often used for noise-abatement

#### **Contact Approaches**



- Gives us permission to descend to and land visually
- Need flight visibility of >1 s.m. and need to remain clear of clouds
- Pilot needs to ask for a contact approach

Note that these would only be used if the conditions are less than VFR at the airport, so we'd be maneuver at low altitude for the airport in <3 s.m. conditions


# **Inoperative Equipment - Navigation**

#### Primary navaid failure (VOR, LOC):

- Before the FAF: Notify ATC and choose a different approach, or divert
- After the FAF: Execute missed approach procedure

#### Glideslope failure:

- Outside the FAF: Inform ATC, ask for the localizer approach
- Inside the FAF: "Fail-down" to the LOC approach, follow LOC guidance and climb/descend to the MDA



AIM 1-1-9

# **Inoperative Equipment - Visual Aids**

#### (1) ILS, PAR, LPV, GLS minima

| Inoperative Component or Visual Aid | Increase Visibility |  |  |
|-------------------------------------|---------------------|--|--|
| All ALS types (except ODALS)        | ¼ mile              |  |  |

#### (2) ILS, LPV, GLS with visibility minima of RVR 1800<sup>†</sup>/2000\*/2200\*

| Inoperative Component or Visual Aid | Increase Visibility          |
|-------------------------------------|------------------------------|
| ALSF 1 & 2, MALSR, SSALR            | To RVR 4000†<br>To RVR 4500* |
| TDZL or RCLS                        | To RVR 2400#                 |
| RVR                                 | To ½ mile                    |

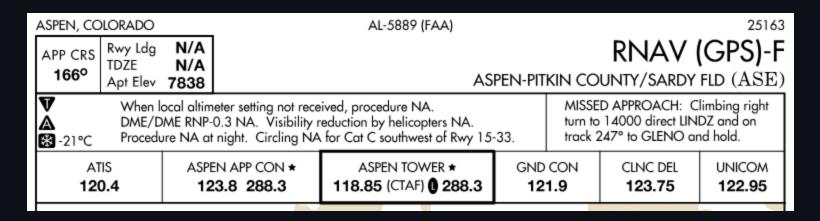
#For ILS, LPV, GLS procedures with a 200 foot HAT, RVR 1800 authorized with use of FD or AP or HUD to DA. For ILS procedures with a 200 foot HAT with a restriction on autopilot usage, RVR 1800 authorized with use of FD or HUD to DA.

#### (3) All Approach Types and all lines of minima other than (1) & (2) above

| Inoperative Component or Visual Aid    | Increase Visibility |
|----------------------------------------|---------------------|
| ALSF 1 & 2, MALSR, SSALR               | ½ mile              |
| MALSF, MALS, SSALF, SSALS, SALSF, SALS | ¼ mile              |

#### (4) Sidestep minima (CAT C-D)

| Inoperative Component or Visual Aid to Sidestep Runway | Increase Visibility |  |  |  |
|--------------------------------------------------------|---------------------|--|--|--|
| ALSF 1 & 2, MALSR, SSALR                               | ½ mile              |  |  |  |


#### (5) All Approach Types, All lines of minima

| Inoperative Component or Visual Aid | Increase Visibility |
|-------------------------------------|---------------------|
| ODALS (CAT A-B)                     | ¼ mile              |
| ODALS (CAT C-D)                     | ⅓ mile              |

#### **Approach lighting system inoperative:**

- **Higher minimums are required** with inoperative ALS
- If more than one component is inoperative, each minimum is raised to the **highest minimum** required by any single inoperative component
- See Inoperative Components or Visual Aids
   Table

## **Cold Weather Operations**



- The snowflake symbol on an approach indicates cold-weather corrections are required when the reported temperature is at or below the given value
- Raise any cross-altitude restrictions and minimum altitude by the amount in the cold-weather correction chart in the TPP

|      | COLD TEMPERATURE ERROR TABLE |     |     |     |     |     |     |     |     |      |      |      |      |      |      |
|------|------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
|      | HEIGHT ABOVE AIRPORT IN FEET |     |     |     |     |     |     |     |     |      |      |      |      |      |      |
|      |                              | 200 | 300 | 400 | 500 | 600 | 700 | 800 | 900 | 1000 | 1500 | 2000 | 3000 | 4000 | 5000 |
| ွ    | +10                          | 10  | 10  | 10  | 10  | 20  | 20  | 20  | 20  | 20   | 30   | 40   | 60   | 80   | 90   |
| ΑP   | 0                            | 20  | 20  | 30  | 30  | 40  | 40  | 50  | 50  | 60   | 90   | 120  | 170  | 230  | 280  |
| ΤE   | -10                          | 20  | 30  | 40  | 50  | 60  | 70  | 80  | 90  | 100  | 150  | 200  | 290  | 390  | 490  |
| RTED | -20                          | 30  | 50  | 60  | 70  | 90  | 100 | 120 | 130 | 140  | 210  | 280  | 420  | 570  | 710  |
|      | -30                          | 40  | 60  | 80  | 100 | 120 | 140 | 150 | 170 | 190  | 280  | 380  | 570  | 760  | 950  |

# Summary

#### **Approach Types:**

- **Precision:** ILS (200' minimums, DA)
- Non-Precision: VOR, LOC, LDA (stepdown fixes, MDA)
- GPS:
  - LPV, LNAV/VNAV (vertical guidance)
  - LP, LNAV (no vertical guidance)

#### **Entry Methods:**

- IAF, transitions, vectors to final
- Procedure turns, HILPT, SNoRT exceptions

#### **Special Procedures:**

- Circling approaches, sidestep maneuvers
- LDA, LOC BC, visual/contact approaches

#### **Operational:**

- Equipment failures
- Cold weather corrections
- Visual references (91.175)

# **Knowledge Check**

While breifing an approach chart you come across a symbol on the airport sketch that you don't recognize. Where can you find its meaning?

# **Knowledge Check**

When flying a localizer back-course approach you notice the glideslope needle falling. What should you do?

#### References

- AIM Chapter 1
- AIM Chapter 5
- Looking for the Lights
- 14 CFR 91.175
- Sporty's RNAV/GPS Approach Video